Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bikondoa, Oier; Carbone, Dina; Chamard, Virginie; Metzger, Till Hartmut (2013)
Publisher: Nature Publishing Group
Journal: Scientific Reports
Languages: English
Types: Article
Subjects: QC, [ SPI.OPTI ] Engineering Sciences [physics]/Optics / Photonic, [PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics], [ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics], [SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing, [SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic, [ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing, Article
International audience; Instabilities caused during the erosion of a surface by an ion beam can lead to the formation of self-organized patterns of nanostructures. Understanding the self-organization process requires not only the in-situ characterization of ensemble averaged properties but also probing the dynamics. This can be done with the use of coherent X-rays and analyzing the temporal correlations of the scattered intensity. Here, we show that the dynamics of a semiconductor surface nanopatterned by normal incidence ion beam sputtering are age-dependent and slow down with sputtering time. This work provides a novel insight into the erosion dynamics and opens new perspectives for the understanding of self-organization mechanisms.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Taylor Perron, J., Kirchner, J. W. & Dietrich, W. E. Formation of evenly spaced ridges and valleys. Nature 460, 502-505 (2009).
    • 2. Ashton, A., Murray, A. B. & Arnoult, O. Formation of coastline features by largescale instabilities induced by high-angle waves. Nature 414, 296-300 (2001).
    • 3. Kok, J. F., Parteli, E. J. R., Michaels, T. I. & Bou Karam, D. The physics of windblown sand and dust. Rep. Prog. Phys. 75, 106901 (2012).
    • 4. Mun˜oz-Garc´ıa, J. et al. Self-organized surface nanopatterning by ion beam sputtering. In Toward Functional Nanomaterials, Lecture Notes in Nanoscale Science and Technology 5, 323-398 (Springer, Berlin 2009)
    • 5. Mun˜oz-Garc´ıa, J., Gago, R., Va´zquez, L., Sa´nchez-Garc´ıa, J. A. & Cuerno, R. Observation and modeling of interrupted pattern coarsening: surface nanostructuring by ion erosion. Phys. Rev. Lett. 104, 026101 (2010).
    • 6. Carter, G. The physics and applications of ion beam erosion. J. Phys. D: Appl. Phys. 34, R1-R22 (2001).
    • 7. Valbusa, U., Boragno, C. & Buatier de Mongeot, F. Nanostructuring surfaces by ion sputtering. J. Phys.: Cond. Matter 14, 8153-8176 (2002).
    • 8. Chan, W. L. & Chason, E. Making waves: kinetic processes controlling surface evolution during low energy ion sputtering. J. Appl. Physics 101, 121301 (2007).
    • 9. Bradley, R. M. & Shipman, P. D. Spontaneous pattern formation induced by ion bombardment of binary compounds. Phys. Rev. Lett. 105, 145501 (2010).
    • 10. Madi, C. S., Anzenberg, E., Ludwig Jr, K. F. & Aziz, M. J. Mass redistribution causes the structural richness of ion irradiated surfaces. Phys. Rev. Lett. 106, 066101 (2011).
    • 11. Norris, S. A. et al. Molecular dynamics of single-particle impacts predicts phase diagrams for large scale pattern formation. Nat. Comms 2, 276 (2011).
    • 12. Anzenberg, E., Madi, C. S., Aziz, M. J. & Ludwig, K. F. Jr. Time-resolved measurements of nanoscale surface pattern formation kinetics in two dimensions on ion-irradiated Si. Phys. Rev. B 84, 214108 (2011).
    • 13. Vo¨llner, J., Ziberi, B., Frost, F. & Rauschenbach, B. Topography evolution mechanism on fused silica during low-energy ion beam sputtering. J. App. Phys 109, 043501 (2011).
    • 14. Mun˜oz-Garc´ıa, J. et al. Independence of interrupted coarsening on initial system order: ionbeam nanopatterning of amorphous versus crystalline silicon targets. J. Phys.: Cond. Matter 24, 375302 (2012).
    • 15. Facsko, S. et al. Formation of ordered nanoscale semiconductor dots by ion sputtering. Science 285, 1551-1553 (1999).
    • 16. Teichert, C. Self-organization of nanostructures in semiconductor heteroepitaxy. Phys. Reports 365, 335-432 (2002).
    • 17. Keller, A. et al. Transition from smoothing to roughening of ion-eroded GaSb surfaces. App. Phys. Lett. 94, 193103 (2009).
    • 18. Politi, P. & Misbah, C. When does coarsening occur in the dynamics of onedimensional fronts? Phys. Rev. Lett. 92, 090601 (2004).
    • 19. Carbone, D. et al. Ion-induced nanopatterns on semiconductor surfaces investigated by grazing incidence x-ray scattering techniques. J. Phys. Cond. Matter 21, 224007 (2009).
    • 20. Plantevin, O., Gago, R., Va´zquez, L., Biermanns, A. & Metzger, T. H. In situ x-ray scattering study of self-organized nanodot pattern formation on GaSb(001) by ion beam sputtering. Appl. Phys. Lett. 91, 113105 (2007).
    • 21. Boragno, C. & Felici, R. Synchrotron x-ray scattering from metal surfaces nanostructured by IBS. J. Phys. Cond. Matter 21, 224006 (2009).
    • 22. Pecora, R. Basic concepts - Scattering and time correlation functions. In: Borsali, R. & Pecora, R. (Eds.) Soft Matter Characterization, 1-40, Springer, Berlin (2008).
    • 23. Nugent, K. A. Coherent methods in the X-ray sciences. Adv. Phys. 59, 1-99 (2010).
    • 24. Sutton, M., et al. Observation of speckle by diffraction with coherent X-rays. Nature 352, 608-610 (1991).
    • 25. Berne, B. J. & Pecora, R. Dynamic Light Scattering. Dover, New York (2000).
    • 26. Le Roy, S., Sønderga˚rd, E., Nerbø, I. S., Kildemo, M. & Plapp, M. Diffuse-interface model for nanopatterning induced by self-sustained ion-etch masking. Phys. Rev. B 81, 161401(R) (2010).
    • 27. Sutton, M., Laaziri, K., Livet, F. & Bley, F. Using coherence to measure two-time correlation functions. Optics Express 11, 2268-2277 (2003).
    • 28. Fluerasu, A., Sutton, M. & Dufresne, E. M. X-Ray intensity fluctuation spectroscopy studies on phase-ordering systems. Phys. Rev. Lett. 94, 055501 (2005).
    • 29. Brown, G., Rikvold, P. A., Sutton, M. & Grant, M. Speckle from phase-ordering systems. Phys. Rev. E 56, 6601-6612 (1997).
    • 30. Sutton, M. A review of X-ray intensity fluctuation spectroscopy. C. R. Physique 9, 657-667 (2008).
    • 31. Hohenberg, P. C. & Halperin, B. I. Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435-479 (1977).
    • 32. Fluerasu, A., Moussa¨ıd, A., Madsen, A. & Schofield, A. Slow dynamics and aging in colloidal gels studied by x-ray photon correlation spectroscopy. Phys. Rev. E 76, 010401(R) (2007).
    • 33. Kohlrausch, F. Ueber die elastische Nachwirkung bei der Torsion. Annalen der Physik und Chemie (Leipzig) 119, 337-368 (1863).
    • 34. Williams, G. & Watts, D. C. Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80-85 (1970).
    • 35. Berthier, L., Biroli, G., Bouchaud, J.-P., Cipelletti, L. & van Saarloos, W. (Eds.). Dynamical Heterogeneities In Glasses, Colloids and Granular Materials. Oxford University Press (2011).
    • 36. Corberi, F., Lippiello, E. & Zannetti, M. Interface fluctuations, bulk fluctuations, and dimensionality in the off-equilibrium response of coarsening systems. Phys. Rev. E 63, 061506 (2001).
    • 37. Umbach, C. C., Headrick, R. L. & Chang, K.-C. Spontaneous nanoscale corrugation of ioneroded SiO2: the role of ion-irradiation-enhanced viscous flow. Phys. Rev. Lett. 87, 246104 (2001).
    • 38. L, Cipelletti. et al. Universal non-diffusive slow dynamics in aging soft matter. Faraday Discuss. 123, 237-251 (2003).
    • 39. Cugliandolo, L. F. Dynamics of glassy systems. arXiv: cond-mat/0210312v2 11 Dec 2002.
    • 40. Carter, G. & Vishyankov, V. Roughening and ripple instabilities on ionbombarded Si. Phys. Rev. B 54, 17647-17653 (1996).
    • 41. Davidovitch, B., Aziz, M. J. & Brenner, M. P. On the stabilization of ion sputtered surfaces. Phys. Rev. B 76, 205420 (2007).
    • 42. Zhou, H., Zhou, L., O¨ zaydin, G., Ludwig Jr, K. F. & Headrick, R. L. Mechanisms of pattern formation and smoothing induced by ion-beam erosion. Phys. Rev. B 78, 165404 (2008).
    • 43. Cuerno, R., Castro, M., Mun˜oz-Garc´ıa, J., Gago, R. & Va´zquez, L. Nanoscale pattern formation at surfaces under ion-beam sputtering: A perspective from continuum models. Nucl. Instr. and Meth. B 269, 894-900 (2011).
    • 44. Castro, M. & Cuerno, R. Hydrodynamic approach to surface pattern formation by ion beams. Appl. Surf. Sci. 258, 4171-4178 (2012).
    • 45. Richert, R. Heterogeneous dynamics in liquids: fluctuations in space and time. J. Phys.: Cond. Matter 14, R703-R738 (2002).
    • 46. Medhekar, N. V., Chan, W. L., Shenoy, V. B. & Chason, E. Stress-enhanced pattern formation on surfaces during low energy ion bombardment. J. Phys.: Cond. Matter 21, 224021 (2009).
    • 47. Madsen, A., Leheny, R. L., Guo, H., Sprung, M. & Czakkel, O. Beyond simple exponential correlation functions and equilibrium dynamics in x-ray photon correlation spectroscopy. New J. Phys. 12, 055001 (2010).
    • 48. Kabla, A. & Debre´geas, G. Contact dynamics in a gently vibrated granular pile. Phys. Rev. Lett. 92, 035501 (2004).
    • 49. Bikondoa, O., Carbone, D., Chamard, V. & Metzger, T. H. Ion beam sputtered surface dynamics investigated with two-time correlation functions: a model study. J. Phys.: Cond. Matter 24, 445006 (2012).
    • 50. Andreotti, B., Fourrie`re, A., Ould-Kaddour, F., Murray, B. & Claudin, P. Giant aeolian dune size determined by the average depth of the atmospheric boundary layer. Nature 457, 1120-1123 (2009).
    • 51. Carbone, D. et al. Versatile vacuum chamber for in situ surface X-ray scattering studies. J. Synchrotron Rad. 15, 414-419 (2008).
    • 52. Livet, F. et al. Using direct illumination CCDs as high-resolution area detectors for X-ray scattering. Nucl. Instr. Methods A 451, 596-609 (2000).
    • 53. Mocuta, C., Reichert, H., Mecke, K., Dosch, H. & Drakopoulos, M. Scaling in the time domain: universal dynamics of order fluctuations in Fe3Al. Science 308, 1287-1291 (2005).
    • How to cite this article: Bikondoa, O., Carbone, D., Chamard, V. & Metzger, T.H. Ageing dynamics of ion bombardment induced self-organization processes. Sci. Rep. 3, 1850; DOI:10.1038/srep01850 (2013).
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • RCUK | Exploiting XMaS Studies of...
  • RCUK | Exploiting XMaS Studies of...

Cite this article