LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
{Kuhar} M.; {Krucker} S.; {Hannah} I.~G.; {Glesener} L.; {Saint-Hilaire} P.; {Grefenstette} B.~W.; {Hudson} H.~S.; {White} S.~M.; {Smith} D.~M.; {Marsh} A.~J.; {Wright} P.~J.; {Boggs} S.~E.; {Christensen} F.~E.; {Craig} W.~W.; {Hailey} C.~J.; {Harrison} F.~A.; {Stern} D.; {Zhang} W.~W. (2017)
Journal: \apj
Languages: English
Types: Unknown,Article
Subjects: Astrophysics - Solar and Stellar Astrophysics, QB, QC, Astrophysics - High Energy Astrophysical Phenomena
We present observations of the occulted active region AR12222 during the third {\em NuSTAR} solar campaign on 2014 December 11, with concurrent {\em SDO/}AIA and {\em FOXSI-2} sounding rocket observations. The active region produced a medium size solar flare one day before the observations, at $\sim18$UT on 2014 December 10, with the post-flare loops still visible at the time of {\em NuSTAR} observations. The time evolution of the source emission in the {\em SDO/}AIA $335\textrm{\AA}$ channel reveals the characteristics of an extreme-ultraviolet late phase event, caused by the continuous formation of new post-flare loops that arch higher and higher in the solar corona. The spectral fitting of {\em NuSTAR} observations yields an isothermal source, with temperature $3.8-4.6$ MK, emission measure $0.3-1.8 \times 10^{46}\textrm{ cm}^{-3}$, and density estimated at $2.5-6.0 \times 10^8 \textrm{ cm}^{-3}$. The observed AIA fluxes are consistent with the derived {\em NuSTAR} temperature range, favoring temperature values in the range $4.0-4.3$ MK. By examining the post-flare loops' cooling times and energy content, we estimate that at least 12 sets of post-flare loops were formed and subsequently cooled between the onset of the flare and {\em NuSTAR} observations, with their total thermal energy content an order of magnitude larger than the energy content at flare peak time. This indicates that the standard approach of using only the flare peak time to derive the total thermal energy content of a flare can lead to a large underestimation of its value.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Boerner, P. F., Testa, P., Warren, H., Weber, M. A., & Schrijver, C. J. 2014, Sol. Phys., 289, 2377
    • Cargill, P. J., Mariska, J. T., & Antiochos, S. K. 1995, ApJ, 439, 1034
    • Del Zanna, G. 2013, A&A, 558, A73
    • Dere, K. P., Landi, E., Mason, H. E., Monsignori Fossi, B. C., & Young, P. R. 1997, A&AS, 125
    • Emslie, A. G., Dennis, B. R., Shih, A. Y., et al. 2012, ApJ, 759, 71
    • Fa´rn´ık, F., Sˇvestka, Z., Hudson, H. S., & Uchida, Y. 1996, Sol. Phys., 168, 331
    • Forbes, T. G., & Lin, J. 2000, Journal of Atmospheric and Solar-Terrestrial Physics, 62, 1499
    • Gallagher, P. T., Dennis, B. R., Krucker, S., Schwartz, R. A., & Tolbert, A. K. 2002, Sol. Phys., 210, 341
    • Grefenstette, B. W., Glesener, L., Krucker, S., et al. 2016, ApJ, 826, 20
    • Hannah, I. G., Christe, S., Krucker, S., et al. 2008, ApJ, 677, 704
    • Hannah, I. G., Grefenstette, B. W., Smith, D. M., et al. 2016, ApJ, 820, L14
    • Harrison, F. A., Craig, W. W., Christensen, F. E., et al. 2013, ApJ, 770, 103
    • Howard, T. A., & Harrison, R. A. 2004, Sol. Phys., 219, 315
    • Hudson, H. S., Lemen, J. R., St. Cyr, O. C., Sterling, A. C., & Webb, D. F. 1998, Geophys. Res. Lett., 25, 2481
    • Kopp, R. A., & Poletto, G. 1984, Sol. Phys., 93, 351
    • Krucker, S., Christe, S., Glesener, L., et al. 2014, ApJ, 793, L32
    • Landi, E., Young, P. R., Dere, K. P., Del Zanna, G., & Mason, H. E. 2013, ApJ, 763, 86
    • Lin, R. P., Dennis, B. R., Hurford, G. J., et al. 2002, Sol. Phys., 210, 3
    • Liu, K., Zhang, J., Wang, Y., & Cheng, X. 2013, ApJ, 768, 150
    • MacCombie, W. J., & Rust, D. M. 1979, Sol. Phys., 61, 69
    • Madsen, K. K., Harrison, F. A., Markwardt, C. B., et al. 2015, ApJS, 220, 8
    • McIntosh, S. W., Leamon, R. J., Davey, A. R., & Wills-Davey, M. J. 2007, ApJ, 660, 1653
    • Nitta, N. V., Aschwanden, M. J., Boerner, P. F., et al. 2013, Sol. Phys., 288, 241
    • Parenti, S., Reale, F., & Reeves, K. K. 2010, A&A, 517, A41
    • Reale, F., Guarrasi, M., Testa, P., et al. 2011, ApJ, 736, L16
    • Rust, D. M., & Hildner, E. 1976, Sol. Phys., 48, 381
    • Stewart, R. T., McCabe, M. K., Koomen, M. J., Hansen, R. T., & Dulk, G. A. 1974, Sol. Phys., 36, 203
    • Testa, P., & Reale, F. 2012, ApJ, 750, L10
    • Sˇvestka, Z. 1984, Sol. Phys., 94, 171
    • Sˇvestka, Z., Dennis, B. R., Woodgate, B. E., et al. 1982, Sol. Phys., 80, 143
    • Sˇvestka, Z., Fa´rn´ık, F., Hudson, H. S., et al. 1995, Sol. Phys., 161, 331
    • Warren, H. P., Winebarger, A. R., & Brooks, D. H. 2012, ApJ, 759, 141
    • West, M. J., & Seaton, D. B. 2015, ApJ, 801, L6
    • Withbroe, G. L. 1988, ApJ, 325, 442
    • Woods, T. N. 2014, Sol. Phys., 289, 3391
    • Woods, T. N., Hock, R., Eparvier, F., et al. 2011, ApJ, 739, 59
    • Zarro, D. M., Sterling, A. C., Thompson, B. J., Hudson, H. S., & Nitta, N. 1999, ApJ, 520, L139
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Published in

Funded by projects

Cite this article