LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Payne, Helen; Allen, Harriet A. (2011)
Publisher: MIT
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

mesheuropmc: psychological phenomena and processes, behavioral disciplines and activities, education, humanities
Selective attention is critical for controlling the input to mental processes. Attentional mechanisms act not only to select relevant stimuli but also to exclude irrelevant stimuli. There is evidence that we can actively ignore irrelevant information. We measured neural activity relating to successfully ignoring distracters (using preview search) and found increases in both the precuneus and primary visual cortex during preparation to ignore distracters. We also found reductions in activity in fronto-parietal regions while previewing distracters and a reduction in activity in early visual cortex during search when a subset of items was successfully excluded from search, both associated with precuneus activity. These results are consistent with the proposal that actively excluding distractions has two components: an initial stage where distracters are encoded, and a subsequent stage where further processing of these items is inhibited. Our findings suggest that it is the precuneus that controls this process and can modulate activity in visual cortex as early as V1.

Share - Bookmark

Cite this article