LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Dacre, Helen; Grant, Alan; Harvey, Natalie; Thomson, David; Webster, Helen; Marenco, Franco (2015)
Publisher: American Geophysical Union
Languages: English
Types: Article
Subjects:
The long duration of the 2010 Eyjafjallajökull eruption provided a unique opportunity to measure a widely dispersed volcanic ash cloud. Layers of volcanic ash were observed by the European Aerosol Research Lidar Network with a mean depth of 1.2 km and standard deviation of 0.9 km. In this paper we evaluate the ability of the Met Office's Numerical Atmospheric-dispersion Modelling Environment (NAME) to simulate the observed ash layers and examine the processes controlling their depth. NAME simulates distal ash layer depths exceptionally well with a mean depth of 1.2 km and standard deviation of 0.7 km. The dominant process determining the depth of ash layers over Europe is the balance between the vertical wind shear (which acts to reduce the depth of the ash layers) and vertical turbulent mixing (which acts to deepen the layers). Interestingly, differential sedimentation of ash particles and the volcano vertical emission profile play relatively minor roles.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Anderson, A. D. (1957), Free-air turbulence, J. Meteorol., 14, 477-494.
    • Ansmann, A., et al. (2011), Ash and fine-mode particle mass profiles from EARLINET-AERONET observations over central Europe after the eruptions of the Eyjafjallajökull volcano in 2010, J. Geophys. Res., 116, D00U02, doi:10.1029/2010JD015567.
    • Arason, P., G. N. Petersen, and H. Bjornsson (2011), Observations of the altitude of the volcanic plume during the eruption of Eyjafjallajökull, April-May 2010, Earth Syst. Sci. Data Discuss., 4, 1-25.
    • Balluch, M. G., and P. H. Haynes (1997), Quantification of lower stratospheric mixing processes using aircraft data, J. Geophys. Res., 102, 23,487-23,504.
    • Brown, R. (1973), New indices to locate clear-air turbulence, Meteorol. Mag., 102, 347-361.
    • Colette, A., and G. Ancellet (2006), Variability of the tropospheric mixing and of streamer formation and their impact on the lifetime of observed ozone layers, Geophys. Res. Lett., 33, L09808, doi:10.1029/2006GL025793.
    • Costa, A., A. Folch, and G. Macedonio (2010), A model for wet aggregation of ash particles in volcanic plumes and clouds: I. Theoretical formulation, J. Geophys. Res., 115, B09201, doi:10.1029/2009JB007175.
    • Dacre, H. F., et al. (2011), Evaluating the structure and magnitude of the ash plume during the initial phase of the 2010 Eyjafjallajökull eruption using lidar observations and NAME simulations, J. Geophys. Res., 116, D00U03, doi:10.1029/2011JD015608.
    • Dacre, H. F., A. L. M. Grant, and B. T. Johnson (2013), Aircraft observations and model simulations of concentration and particle size distribution in the Eyjafjallajökull volcanic ash cloud, Atmos. Chem. Phys., 13, 1277-1291.
    • Devenish, B. J., D. J. Thomson, F. Marenco, S. J. Leadbetter, H. Ricketts, and H. F. Dacre (2012), A study of the arrival over the United Kingdom in April 2010 of the Eyjafjallajökull ash cloud using ground-based lidar and numerical simulations, Atmos. Env., 48, 152-164.
    • Ellrod, G. P., and D. I. Knapp (1992), An objective clear-air turbulence forecasting technique: Verification and operational use, Weather Forecasting, 7, 150-165.
    • Flentje, H., H. Claude, T. Elste, S. Gilge, U. Köhler, C. Plass-Dülmer, and W. Fricke (2010), The Eyjafjallajökull eruption in April 2010-Detection of volcanic plume using in-situ measurements, ozone sondes and lidar-ceilometer profiles, Atmos. Chem. Phys., 10, 10,085-10,092.
    • Grant, A. L. M., H. F. Dacre, D. J. Thomson, and F. Marenco (2013), Horizontal and vertical structure of the Eyjafjallajökull ash cloud over the UK: A comparison of airborne lidar observations and simulations, Atmos. Chem. Phys., 12, 10,145-10,159.
    • Hall, T. M., and D. Waugh (1997), Tracer transport in the tropical stratosphere due to vertical diffusion and horizontal mixing, Geophys. Res. Lett., 24, 1383-1386.
    • Haynes, P., and J. Anglade (1997), The vertical-scale cascade in atmospheric tracers due to large-scale differential advection, J. Atmos. Sci., 54, 1121-1136.
    • Jones, A., D. Thomson, M. Hort, and B. Devenish (2007), The UK Met Office's next-generation atmospheric dispersion model, NAME III, in Air Pollution Modeling and Its Application XVII, edited by C. Borrego and A.-L. Norman, pp. 580-589, Springer, New York.
    • Legras, B., I. Pisso, F. Lefèvre, and G. Berthet (2005), Variability of the Lagrangian turbulent diffusion in the lower stratosphere, Atmos. Chem. Phys., 5, 1605-1622.
    • Marenco, F., and R. J. Hogan (2011), Determining the contribution of volcanic ash and boundary layer aerosol in backscatter lidar returns: A three-component atmosphere approach, J. Geophys. Res., 116, D00U06, doi:10.1029/2010JD015415.
    • Marenco, F., B. Johnson, K. Turnbull, S. Newman, J. Haywood, H. Webster, and H. Ricketts (2011), Airborne lidar observations of the 2010 Eyjafjallajökull volcanic ash plume, J. Geophys. Res., 116, D00U05, doi:10.1029/2011JD016396.
    • Mona, L., A. Amodeo, G. D'Amico, A. Giunta, F. Madonna, and G. Pappalardo (2012), Multi-wavelength Raman lidar observations of the Eyjafjallajökull volcanic cloud over Potenza, southern Italy, Atmos. Chem. Phys., 12, 2229-2244.
    • Newell, R. E., Z.-X. Wu, Y. Zhu, W. Hu, E. V. Browell, G. L. Gregory, G. W. Sachse, J. E. Collins, K. K. Kelly, and S. C. Liu (1996), Vertical fine-scale atmospheric structure measured from NASA DC-8 during PEM-West A, J. Geophys. Res., 101, 1943-1960.
    • Newell, R. E., V. Thouret, J. Y. N. Cho, P. Stoller, A. Marenco, and H. G. Smit (1999), Ubiquity of quasi-horizontal layers in the troposphere, Nature, 398, 316-319.
    • Pappalardo, G., et al. (2013), Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET, Atmos. Chem. Phys., 13, 4429-4450.
    • Roach, W. T. (1970), On the influence of synoptic development on the production of high level turbulence, Q. J. R. Meteorol. Soc., 96, 413-429.
    • Rose, W. I., G. J. S. Bluth, and G. G. J. Ernst (2000), Integrating retrievals of volcanic cloud characteristics from satellite remote sensors: A summary, Philos. Trans. R. Soc. London, Ser. A, 358, 1585-1606.
    • Schumann, U. (1995), Direct and large eddy simulations of stratified homogeneous shear flows, Dyn. Atmos. Oceans, 23, 81-98.
    • Schumann, U., et al. (2011), Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010, Atmos. Chem. Phys., 11, 2245-2279.
    • Sillman, S., L. Logan, and S. Wofsy (1990), A regional scale model for ozone in the United States with subgrid representation of urban and power plant plumes, J. Geophys. Res., 95, 5731-5748.
    • Sparks, R. S. J., M. Bursik, S. N. Carey, J. A. Glbert, and L. S. Glaze (1997), Volcanic Plumes, John Wiley, Chichester, U. K.
    • Stoller, P., et al. (1999), Measurements of atmospheric layers from the NASA DC-8 and P-3B aircraft during PEM-Tropics A, J. Geophys. Res., 104, 5745-5764.
    • Thouret, V., J. Y. N. Cho, R. E. Newell, A. Marenco, and H. G. J. Smit (2000), General characteristics of tropospheric trace constituent layers observed in the MOZAIC program, J. Geophys. Res., 105, 17,379-17,392.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article