LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Mitchell, E.J.S.; Coulson, G.; Butt, E.W.; Forster, P.M.; Jones, J.M.; Williams, A. (2017)
Publisher: Elsevier BV
Journal: Atmospheric Environment
Languages: English
Types: Article
Subjects: Environmental Science(all), Atmospheric Science
In this study we review the current status of residential solid fuel (RSF) use in the UK and compare it with New Zealand, which has had severe wintertime air quality issues for many years that is directly attributable to domestic wood burning in heating stoves. Results showed that RSF contributed to more than 40 μg m−3 PM10 and 10 μg m−3 BC in some suburban locations of New Zealand in 2006, with significant air quality and climate impacts. Models predict RSF consumption in New Zealand to decrease slightly from 7 PJ to 6 PJ between 1990 and 2030, whereas consumption in the UK increases by a factor of 14. Emissions are highest from heating stoves and fireplaces, and their calculated contribution to radiative forcing in the UK increases by 23% between 2010 and 2030, with black carbon accounting for more than three quarters of the total warming effect. By 2030, the residential sector accounts for 44% of total BC emissions in the UK and far exceeds emissions from the traffic sector. Finally, a unique bottom-up emissions inventory was produced for both countries using the latest national survey and census data for the year 2013/14. Fuel- and technology-specific emissions factors were compared between multiple inventories including GAINS, the IPCC, the EMEP/EEA and the NAEI. In the UK, it was found that wood consumption in stoves was within 30% of the GAINS inventory, but consumption in fireplaces was substantially higher and fossil fuel consumption is more than twice the GAINS estimate. As a result, emissions were generally a factor of 2–3 higher for biomass and 2–6 higher for coal. In New Zealand, coal and lignite consumption in stoves is within 24% of the GAINS inventory estimate, but wood consumption is more than 7 times the GAINS estimate. As a result, emissions were generally a factor of 1–2 higher for coal and several times higher for wood. The results of this study indicate that emissions from residential heating stoves and fireplaces may be underestimated in climate models. Emissions are increasing rapidly in the UK which may result in severe wintertime air quality reductions, as seen in New Zealand, and contribute to climate warming unless controls are implemented such as the Ecodesign emissions limits.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Coulson, G., Wilton, E., Somervell, E., Longley, I. 2013. 10 Years of Research on Woodstove Emissions in New Zealand e a Review. In: Proceedings of the 16th IUPPA World Clean Air Congress, Cape Town, SA, October 2013.
    • Aas, W., Tsyro, S., Bieber, E., Bergstro€m, R., Ceburnis, D., Ellermann, T., Fagerli, H., Fro€lich, M., Gehrig, R., Makkonen, U., Nemitz, E., Otjes, R., Perez, N., Perrino, C., Prevo^t, A.S.H., Putaud, J.P., Simpson, D., Spindler, G., Vana, M., Yttri, K.E., 2012. Lessons learnt from the first EMEP intensive measurement periods. Atmos. Chem. Phys. 12, 8073e8094.
    • Adams, P.W., Hammond, G.P., Mcmanus, M.C., Mezzullo, W.G., 2011. Barriers to and drivers for UK bioenergy development. Renew. Sustain. Energy Rev. 15, 1217e1227.
    • Allan, J.D., Williams, P.I., Morgan, W.T., Martin, C.L., Flynn, M.J., Lee, J., Nemitz, E., Phillips, G.J., Gallagher, M.W., Coe, H., 2010. Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities. Atmos. Chem. Phys. 10, 647e668.
    • Ancelet, T., Davy, P., Trompetter, W., Markwitz, A., Weatherburn, D., 2010. A comparison of particulate and particle-phase PAH emissions from a modern wood burner with those of an old wood burner. Air Qual. Clim. Change 44, 21.
    • Ancelet, T., Davy, P.K., Mitchell, T., Trompetter, W.J., Markwitz, A., Weatherburn, D.C., 2012. Identification of particulate matter sources on an hourly time-scale in a wood burning community. Environ. Sci. Technol. 46, 4767e4774.
    • Ancelet, T., Davy, P.K., Trompetter, W.J., Markwitz, A., Weatherburn, D.C., 2014. Particulate matter sources on an hourly timescale in a rural community during the winter. J. Air Waste Manag. Assoc. 64, 501e508.
    • Ancelet, T., Davy, P.K., Trompetter, W.J., 2015. Particulate matter sources and longterm trends in a small New Zealand city. Atmos. Pollut. Res. 6, 1105e1112.
    • AQEG, 2012. Fine Particulate Matter (PM2.5) in the United Kingdom. Air Quality Expert Group (AQEG) to the Department for Environment, Food and Rural Affairs (DEFRA).
    • BANZ, 2010. New Zealand Bioenergy Strategy. The Bioenergy Association of New Zealand.
    • Beamish, B.B., Barakat, M.A., St. George, J.D., 2001. Spontaneous-combustion propensity of New Zealand coals under adiabatic conditions. Int. J. Coal Geol. 45, 217e224.
    • Beerepoot, M., Marmion, A., 2012. Policies for Renewable Heat: an Integrated Approach. OECD/IEA, Paris.
    • Bitterman, W., Suvorov, M., 2012. Quality Standard for Statistics on Wood Fuel Consumption of Households Concerted Action to Support the Implementation of the RES Directive 2009/28/EC (CA-RES).
    • Bond, T.C., Streets, D.G., Yarber, K.F., Nelson, S.M., Woo, J.-H., Klimont, Z., 2004. A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. Atmos. 109, D14203.
    • Bond, T.C., Doherty, S.J., Fahey, D.W., Forster, P.M., Berntsen, T., Deangelo, B.J., Flanner, M.G., Ghan, S., Ka€rcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P.K., Sarofim, M.C., Schultz, M.G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S.K., Hopke, P.K., Jacobson, M.Z., Kaiser, J.W., Klimont, Z., Lohmann, U., Schwarz, J.P., Shindell, D., Storelvmo, T., Warren, S.G., Zender, C.S., 2013. Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res. Atmos. 118, 5380e5552.
    • Bonjour, S., Adair-Rohani, H., Wolf, J., Bruce, N.G., Mehta, S., Pruss-Ustun, A., Lahiff, M., Rehfuess, E.A., Mishra, V., Smith, K.R., 2013. Solid fuel use for household cooking: country and regional estimates for 1980-2010. Environ. Health Perspect. 121, 784e790.
    • Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S.K., Sherwood, S., Stevens, B., Zhang, X.Y., 2013. Clouds and aerosols. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    • Bruns, E.A., Krapf, M., Orasche, J., Huang, Y., Zimmermann, R., Drinovec, L., Mocnik, G., El-Haddad, I., Slowik, J.G., Dommen, J., Baltensperger, U., Prevo^t, A.S.H., 2015. Characterization of primary and secondary wood combustion products generated under different burner loads. Atmos. Chem. Phys. 15, 2825e2841.
    • Bruns, E.A., El Haddad, I., Slowik, J.G., Kilic, D., Klein, F., Baltensperger, U., Prevo^t, A.S.H., 2016. Identification of significant precursor gases of secondary organic aerosols from residential wood combustion. Sci. Rep. 6, 27881.
    • Butt, E.W., Rap, A., Schmidt, A., Scott, C.E., Pringle, K.J., Reddington, C.L., Richards, N.A.D., Woodhouse, M.T., Ramirez-Villegas, J., Yang, H., Vakkari, V., Stone, E.A., Rupakheti, M.S., Praveen, P.G., Van Zyl, P.P., Beukes, J., Josipovic, M., Mitchell, E.J.S., Sallu, S.M., Forster, P.M., Spracklen, D.V., 2016. The impact of residential combustion emissions on atmospheric aerosol, human health, and climate. Atmos. Chem. Phys. 16, 873e905.
    • Carbon Trust, 2012. Biomass Heat Accelerator: Overview and Summary of Output. The Carbon Trust, London, UK.
    • Chafe, Z., Brauer, M., Heroux, M., Klimont, Z., Lanki, T., Salonen, R.O., Smith, K.R., 2015. Residential Heating with Wood and Coal: Health Impacts and Policy Options in Europe and North America. Denmark, World Health Organisation (WHO), Copenhagen.
    • Coulson, G., Bian, R., Somervell, E., 2015. An investigation of the variability of particulate emissions from woodstoves in New Zealand. Aerosol Air Qual. Res. 15, 2346e2356.
    • Crilley, L.R., Bloss, W.J., Yin, J., Beddows, D.C.S., Harrison, R.M., Allan, J.D., Young, D.E., Flynn, M., Williams, P., Zotter, P., Prevot, A.S.H., Heal, M.R., Barlow, J.F., Halios, C.H., Lee, J.D., Szidat, S., Mohr, C., 2015. Sources and contributions of wood smoke during winter in London: assessing local and regional influences. Atmos. Chem. Phys. 15, 3149e3171.
    • Davy, P.K., Ancelet, T., Trompetter, W.J., Markwitz, A., Weatherburn, D.C., 2012. Composition and source contributions of air particulate matter pollution in a New Zealand suburban town. Atmos. Pollut. Res. 3, 143e147.
    • DCLG, 2016. Live Tables on Dwelling Stock (Including Vacants). Department for Communities and Local Government, London, UK.
    • DECC, 2012a. The Future of Heating: a Strategic Framework for Low Carbon Heat in the UK. Department of Energy and Climate Change, London, UK.
    • DECC, 2012b. UK Bioenergy Strategy. Department of Energy & Climate Change, London, UK.
    • DECC, 2015a. Digest of United Kingdom Energy Statistics (DUKES). Energy Consumption by Final User (Energy Supplied Basis), 1970 to 2014 (DUKES 1.1.5). Department of Energy and Climate Change, London, UK.
    • DECC, 2015b. Sub-national Residual Fuel Consumption in the United Kingdom, 2005-2013, 24 September 2015 ed. Online.
    • DECC, 2016b. Non-domestic RHI and Domestic RHI Monthly Deployment Data. February 2016. 17/03/2016 ed. Department of Energy and Climate Change, London, UK.
    • DECC, 2016a. Domestic Wood Use Survey. Department for Energy and Climate Change, London, UK.
    • Denier Van Der Gon, H.A.C., Bergstro€m, R., Fountoukis, C., Johansson, C., Pandis, S.N., Simpson, D., Visschedijk, A.J.H., 2015. Particulate emissions from residential wood combustion in Europe e revised estimates and an evaluation. Atmos. Chem. Phys. 15, 6503e6519.
    • EEA, 2013. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2013. European Environment Agency, Luxembourg.
    • Eisentraut, A., Brown, A., 2014. Heating without Global Warming: Market Developments and Policy Considerations for Renewable Heat. France, OECD/IEA, Paris.
    • EUROSTAT, 2016. Energy Balances. European Commission.
    • Fountoukis, C., Butler, T., Lawrence, M.G., Denier Van Der Gon, H.A.C., Visschedijk, A.J.H., Charalampidis, P., Pilinis, C., Pandis, S.N., 2014. Impacts of controlling biomass burning emissions on wintertime carbonaceous aerosol in Europe. Atmos. Environ. 87, 175e182.
    • French, L.J., Camilleri, M.J., Isaacs, N.P., Pollard, A.R., 2007. Temperatures and heating energy in New Zealand houses from a nationally representative studydHEEP. Energy Build. 39, 770e782.
    • Fuller, G.W., Tremper, A.H., Baker, T.D., Yttri, K.E., Butterfield, D., 2014. Contribution of wood burning to PM10 in London. Atmos. Environ. 87, 87e94.
    • Grange, S.K., Salmond, J.A., Trompetter, W.J., Davy, P.K., Ancelet, T., 2013. Effect of atmospheric stability on the impact of domestic wood combustion to air quality of a small urban township in winter. Atmos. Environ. 70, 28e38.
    • Howden-Chapman, P., Viggers, H., Chapman, R., O'dea, D., Free, S., O'sullivan, K., 2009. Warm homes: drivers of the demand for heating in the residential sector in New Zealand. Energy Policy 37, 3387e3399.
    • IEA, 2013. Tracking Clean Energy Progress 2013. IEA Input to the Clean Energy Ministerial. OECD/IEA, Paris.
    • Isaacs, N.P., Burrough, C.M., Pollard, A., Saville-Smith, K., Fraser, R., Rossouw, P., Jowett, J., 2010. Energy Use in New Zealand Households. Final Report on the Household Energy End-Use Project (HEEP). BRANZ Ltd., Judgeford, NZ.
    • Jones, J., Ross, A., Williams, A., 2005. Atmospheric chemistry implications of the emission of biomass smoke. J. Energy Inst. 78, 199e200.
    • Jones, J.M., Lea-Langton, A.R., Ma, L., Pourkashanian, M., Williams, A., 2014. Pollutants Generated by the Combustion of Solid Biomass Fuels. Springer, London, UK.
    • Kossmann, M., Sturman, A., 2004. The surface wind field during winter smog nights in Christchurch and coastal Canterbury, New Zealand. Int. J. Climatol. 24, 93e108.
    • Kuschel, G., Metcalfe, J., Wilton, E., Guria, J., Hales, S., Rolfe, K., Woodward, A., 2012. Updated Health and Air Pollution in New Zealand Study (HAPINZ). Ministry of Transport, Ministry for the Environment and New Zealand Transport Agency. http://www.hapinz.org.nz/HAPINZ%20Update_Vol%201%20Summary% 20Report.pdf. Prepared for Health Research Council of New Zealand.
    • Lee, R.G.M., Coleman, P., Jones, J.L., Jones, K.C., Lohmann, R., 2005. Emission factors and importance of PCDD/Fs, PCBs, PCNs, PAHs and PM10 from the domestic burning of coal and wood in the U.K. Environ. Sci. Technol. 39, 1436e1447.
    • Lelieveld, J., Evans, J.S., Fnais, M., Giannadaki, D., Pozzer, A., 2015. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525, 367e371.
    • Lohmann, R., Northcott, G.L., Jones, K.C., 2000. Assessing the contribution of diffuse domestic burning as a source of PCDD/Fs, PCBs, and PAHs to the U.K. Atmos. Environ. Sci. Technol. 34, 2892e2899.
    • Lucon, O., Ürge-Vorsatz, D., Zain Ahmed, A., Akbari, H., Bertoldi, P., Cabeza, L.F., Eyre, N., Gadgil, A., Harvey, L.D.D., Jiang, Y., Liphoto, E., Mirasgedis, S., Murakami, S., Parikh, J., Pyke, C., Vilarin~o, M.V., 2014. Buildings. In: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., Kriemann, B., Savolainen, J., Schlo€mer, S., Von Stechow, C., Zwickel, T., Minx, J.C. (Eds.), Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. and New York, USA.
    • MBIE, 2015. Energy in New Zealand. Energy Balances. Ministry of Business, Innovation & Employment, Wellington, NZ.
    • Mcdonald, J.D., Zielinska, B., Fujita, E.M., Sagebiel, J.C., Chow, J.C., Watson, J.G., 2000. Fine particle and gaseous emission rates from residential wood combustion. Environ. Sci. Technol. 34, 2080e2091.
    • Milionis, A.E., Davies, T.D., 2008. A comparison of temperature inversion statistics at a coastal and a non-coastal location influenced by the same synoptic regime. Theor. Appl. Climatol. 94, 225e239.
    • Mitchell, E.J.S., Lea-Langton, A.R., Jones, J.M., Williams, A., Layden, P., Johnson, R., 2016. The impact of fuel properties on the emissions from the combustion of biomass and other solid fuels in a fixed bed domestic stove. Fuel Process. Technol. 142, 115e123.
    • Molnar, P., Gustafson, P., Johannesson, S., Boman, J., Barregård, L., S€allsten, G., 2005. Domestic wood burning and PM2.5 trace elements: personal exposures, indoor and outdoor levels. Atmos. Environ. 39, 2643e2653.
    • Moshammer, H., Kaiser, A., Flandorfer, C., Haluza, D., Neuberger, M., 2009. Air pollution due to wood burning for heating: a health impact assessment. In: International Society for Environmental Epidemiology 21st Annual Conference. Epidemiology, Dublin, Ireland.
    • Myhre, G., Shindell, D., Breon, F., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., Zhang, H., 2013. Anthropogenic and natural radiative forcing. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    • Naeher, L.P., Brauer, M., Lipsett, M., Zelikoff, J.T., Simpson, C.D., Koenig, J.Q., Smith, K.R., 2007. Woodsmoke health effects: a review. Inhal. Toxicol. 19, 67e106.
    • Noonan, C.W., Ward, T.J., Navidi, W., Sheppard, L., Bergauff, M., Palmer, C., 2011. Assessing the impact of a wood stove replacement program on air quality and children's health. Res. Rep. Health Eff. Inst. 3e37, 39e47 discussion.
    • Nussbaumer, T., 2003. Combustion and Co-combustion of Biomass: Fundamentals, technologies, and primary measures for emission reduction. Energy Fuels 17, 1510e1521.
    • OECD, 2014. OECD Factbook 2014: Economic, Environmental and Social Statistics. http://dx.doi.org/10.1787/factbook-2014-en.
    • OFT, 2011. Off-grid Energy: an OFT Market Study. Office of Fair Trading, London, UK (Crown Copyright).
    • Palmer, J., Cooper, I., 2014. United Kingdom Housing Energy Fact File. Department of Energy and Climate Change, London, UK.
    • Panicker, A.S., Pandithurai, G., Safai, P.D., Dipu, S., Lee, D.-I., 2010. On the contribution of black carbon to the composite aerosol radiative forcing over an urban environment. Atmos. Environ. 44, 3066e3070.
    • Peng, J., Hu, M., Guo, S., Du, Z., Zheng, J., Shang, D., Levy Zamora, M., Zeng, L., Shao, M., Wu, Y.-S., Zheng, J., Wang, Y., Glen, C.R., Collins, D.R., Molina, M.J., Zhang, R., 2016. Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments. Proc. Natl. Acad. Sci. 113, 4266e4271.
    • Peters, H.A., Croft, W.A., Woolson, E.A., Darcey, B.A., Olson, M.A., 1984. Seasonal arsenic exposure from burning chromium-copper-arsenate-treated wood. JAMA 251, 2393e2396.
    • Robinson, D.L., 2015. Wood burning stoves produce PM2.5 particles in amounts similar to traffic and increase global warming. BMJ 351.
    • Saleh, R., Robinson, E.S., Tkacik, D.S., Ahern, A.T., Liu, S., Aiken, A.C., Sullivan, R.C., Presto, A.A., Dubey, M.K., Yokelson, R.J., Donahue, N.M., Robinson, A.L., 2014. Brownness of organics in aerosols from biomass burning linked to their black carbon content. Nat. Geosci. 7, 647e650.
    • Seinfeld, J.H., Pandis, S.N., 2006. Atmospheric Chemistry and Physics: from Air Pollution to Climate Change. John Wiley & Sons, New Jersey, USA.
    • Seljeskog, M., Goile, F., Sevault, A., Lamberg, H., 2013. Particle Emission Factors for Wood Stove Firing in Norway. SINTEF Energy Research, Trondheim, Norway.
    • SIA, 2016. Stove Industry Alliance Research. Stove Industry Alliance.
    • StatisticsNZ, 2015. 2013 Census Data Tables. Statistics New Zealand, Wellington, NZ.
    • StatisticsNZ, 2016. Dwelling and Household Estimates. Statistics New Zealand, Wellington, NZ.
    • Stohl, A., Aamaas, B., Amann, M., Baker, L.H., Bellouin, N., Berntsen, T.K., Boucher, O., Cherian, R., Collins, W., Daskalakis, N., Dusinska, M., Eckhardt, S., Fuglestvedt, J.S., Harju, M., Heyes, C., Hodnebrog, Ø., Hao, J., Im, U., Kanakidou, M., Klimont, Z., Kupiainen, K., Law, K.S., Lund, M.T., Maas, R., Macintosh, C.R., Myhre, G., Myriokefalitakis, S., Olivie, D., Quaas, J., Quennehen, B., Raut, J.C., Rumbold, S.T., Samset, B.H., Schulz, M., Seland, Ø., Shine, K.P., Skeie, R.B., Wang, S., Yttri, K.E., Zhu, T., 2015. Evaluating the climate and air quality impacts of short-lived pollutants. Atmos. Chem. Phys. 15, 10529e10566.
    • Straif, K., Cohen, A., Samet, J. (Eds.), 2013. Air Pollution and Cancer. WHO. IARC Scientific Publication No. 161.
    • Todd, J.J., Greenwood, M., 2006. Proposed Changes to AS/NZS 4013 e Determination of Particle Emissions Factors. Eco-Energy Options Pty Ltd. and AHHA Testing Laboratory report for the Commonwealth Department of the Environment and Heritage.
    • Trompetter, W.J., Grange, S.K., Davy, P.K., Ancelet, T., 2013. Vertical and temporal variations of black carbon in New Zealand urban areas during winter. Atmos. Environ. 75, 179e187.
    • UNEP, 2009. Buildings and Climate Change: Summary for Decision-makers. UNEP DTIE, Paris.
    • USEIA, 2014. Table CE5.2 Household Wood Consumption in the U.S. Totals and Averages, 2009. U.S. Energy Information Administration, 2009 Residential Energy Consumption Survey (RECS) Data. https://www.eia.gov/consumption/ residential/data/2009/.
    • USEPA, 1995. AP 42, Fifth Edition Compilation of Air Pollutant Emission Factors. Volume 1: Stationary Point and Area Sources. United States Environmental Protection Agency, Research Triangle Park, NC, USA.
    • USEPA, 2016. Process for Developing Improved Cordwood Test Methods for Wood Heaters. U.S. EPA Office of Air Quality Planning and Standards (OAQPS), Washington, DC.
    • Van Loo, S., Koppejan, J., 2007. The Handbook of Biomass Combustion and Co-firing. Earthscan.
    • Williams, A., Jones, J.M., Ma, L., Pourkashanian, M., 2012. Pollutants from the combustion of solid biomass fuels. Prog. Energy Combust. Sci. 38, 113e137.
    • Wilton, E., 2012. Review e Particulate Emissions from Wood Burners in New Zealand. Environet Limited, Christchurch, NZ.
    • Winther, M., Nielsen, O.-K., 2011. Technology dependent BC and OC emissions for Danmark, Greenland and the Faroe Islands calculated for the time period 1990e2030. Atmos. Environ. 45, 5880e5895.
    • Wo€hler, M., Andersen, J.S., Becker, G., Persson, H., Reichert, G., Scho€n, C., Schmidl, C., Jaeger, D., Pelz, S.K., 2016. Investigation of real life operation of biomass room heating appliances e results of a European survey. Appl. Energy 169, 240e249.
    • Xie, S., Mahon, K., Petersen, J., 2012. Effects of fuel and operation on particle emissions from wood burners. Air Qual. Clim. Change 46, 17.
    • Yap, P.-S., Garcia, C., 2015. Effectiveness of residential wood-burning regulation on decreasing particulate matter levels and hospitalizations in the san Joaquin Valley air basin. Am. J. Public Health 105, 772e778.
    • Young, D.E., Allan, J.D., Williams, P.I., Green, D.C., Harrison, R.M., Yin, J., Flynn, M.J., Gallagher, M.W., Coe, H., 2015. Investigating a two-component model of solid fuel organic aerosol in London: processes, PM1 contributions, and seasonality. Atmos. Chem. Phys. 15, 2429e2443.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    68
    68%
  • No similar publications.

Share - Bookmark

Cite this article