LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
MacLaren, I.; Wang, L.Q.; Schaffer, B.; Ramasse, Q.M.; Craven, A.J.; Selbach, S.M.; Spaldin, N.A.; Miao, S.; Kalantari, K.; Reaney, I.M. (2013)
Publisher: Wiley
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Condensed Matter::Materials Science
The discovery of unusual nanorod precipitates in bismuth ferrite doped with Nd and Ti is reported. The atomic structure and chemistry of the nanorods are determined using a combination of high angle annular dark field imaging, electron energy loss spectroscopy, and density functional calculations. It is found that the structure of the BiFeO3 matrix is strongly modified adjacent to the precipitates; the readiness of BiFeO3 to adopt different structural allotropes in turn explains why such a large axial ratio, uncommon in precipitates, is stabilized. In addition, a correlation is found between the alignment of the rods and the orientation of ferroelastic domains in the matrix, which is consistent with the system's attempt to minimize its internal strain. Density functional calculations indicate a finite density of electronic states at the Fermi energy within the rods, suggesting enhanced electrical conductivity along the rod axes, and motivating future investigations of nanorod functionalities.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] G. Catalan, J. F. Scott, Adv. Mater. 2009, 21, 2463.
    • [2] J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, R. Ramesh, Nat. Mater. 2009, 8, 229.
    • [3] T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin, S. W. Cheong, Science 2009, 324, 63.
    • [4] X. D. Qi, J. Dho, R. Tomov, M. G. Blamire, J. L. MacManus-Driscoll, Appl. Phys. Lett. 2005, 86, 3.
    • [5] G. W. Pabst, L. W. Martin, Y. H. Chu, R. Ramesh, Appl. Phys. Lett. 2007, 90, 3.
    • [6] Z. X. Cheng, X. L. Wang, H. Kimura, K. Ozawa, S. X. Dou, Appl. Phys. Lett. 2008, 92, 092902.
    • [7] S. Karimi, I. M. Reaney, I. Levin, I. Sterianou, Appl. Phys. Lett. 2009, 94, 12903.
    • [8] S. Fujino, M. Murakami, V. Anbusathaiah, S. H. Lim, V. Nagarajan, C. J. Fennie, M. Wuttig, L. Salamanca-Riba, I. Takeuchi, Appl. Phys. Lett. 2008, 92, 3.
    • [9] D. Kan, L. Palova, V. Anbusathaiah, C. J. Cheng, S. Fujino, V. Nagarajan, K. M. Rabe, I. Takeuchi, Adv. Funct. Mater. 2010, 20, 1108.
    • [10] I. Levin, S. Karimi, V. Provenzano, C. L. Dennis, H. Wu, T. P. Comyn, T. J. Stevenson, R. I. Smith, I. M. Reaney, Phys. Rev. B 2010, 81, 020103.
    • [11] K. Kalantari, I. Sterianou, S. Karimi, M. C. Ferrarelli, S. Miao, D. C. Sinclair, I. M. Reaney, Adv. Funct. Mater. 2011, 21, 3737.
    • [12] I. M. Reaney, I. MacLaren, L. Q. Wang, B. Schaffer, A. Craven, K. Kalantari, I. Sterianou, S. Karimi, D. C. Sinclair, Appl. Phys. Lett. 2012, 100, 182902.
    • [13] K. Kimoto, T. Asaka, X. Z. Yu, T. Nagai, Y. Matsui, K. Ishizuka, Ultramicroscopy 2010, 110, 778.
    • [14] I. MacLaren, R. Villaurrutia, B. Schaffer, L. Houben, A. Pelaiz-Barranco, Adv. Funct. Mater. 2012, 22, 261.
    • [15] P. D. Robb, M. Finnie, P. Longo, A. J. Craven, Ultramicroscopy 2012, 114, 11.
    • [16] L. J. Allen, A. J. D'Alfonso, S. D. Findlay, J. M. LeBeau, N. R. Lugg, S. Stemmer, J. Phys.: Conf. Ser. 2010, 241, 012061.
    • [17] C. C. Ahn, O. L. Krivanek, EELS Atlas - A Reference Guide of Electron Energy Loss Spectra Covering All Stable Elements, 1983, ASU HREM Facility & Gatan Inc.: Warrendale, PAUSA.
    • [18] R. Saeterli, S. M. Selbach, P. Ravindran, T. Grande, R. Holmestad, Phys. Rev. B 2010, 82, 064102.
    • [19] C. Koch, 2002, PhD Thesis: Arizona State University.
    • [20] R. J. Zeches, M. D. Rossell, J. X. Zhang, A. J. Hatt, Q. He, C. H. Yang, A. Kumar, C. H. Wang, A. Melville, C. Adamo, G. Sheng, Y. H. Chu, J. F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L. Q. Chen, D. G. Schlom, N. A. Spaldin, L. W. Martin, R. Ramesh, Science 2009, 326, 977.
    • [21] A. J. Hatt, N. A. Spaldin, C. Ederer, Phys. Rev. B 2010, 81, 054109.
    • [22] H. J. Liu, P. Yang, K. Yao, K. P. Ong, P. Wu, J. Wang, Adv. Funct. Mater. 2012, 22, 937.
    • [23] Y. Birenbaum, C. Ederer, 2012,Personal Communication.
    • [24] S. Karimi, I. M. Reaney, Y. Han, J. Pokorny, I. Sterianou, J. Mater. Sci. 2009, 44, 5102.
    • [25] J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, Phys. Rev. B 2005, 71, 014113.
    • [26] B. Schaffer, W. Grogger, G. Kothleitner, Ultramicroscopy 2004, 102, 27.
    • [27] L. Houben, 2009, http://www.er-c.org/centre/software/imtools.htm (last accessed August 2012).
    • [28] M. Bosman, M. Watanabe, D. T. L. Alexander, V. J. Keast, Ultramicroscopy 2006, 106, 1024.
    • [29] G. Kresse, J. Furthmuller, Phys. Rev. B 1996, 54, 11169.
    • [30] G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
    • [31] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
    • [32] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, A. P. Sutton, Phys. Rev. B 1998, 57, 1505.
    • [33] P. E. Blochl, Phys. Rev. B 1994, 50, 17953.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Funded by projects

Cite this article