LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zeb, A; Hall, DA; Milne, SJ (2015)
Publisher: Springer Verlag (Germany)
Languages: English
Types: Article
Subjects:
The properties of K0.5Bi0.5TiO3-rich ceramic solid solutions in the system (1 - x)K0.5Bi0.5TiO3– xBi(Mg0.5Ti0.5)O3 are reported. The highest values of piezoelectric charge coefficient, d33, and field-induced strains are found in compositions located close to a compositional boundary between single-phase tetragonal and mixed tetragonal ? cubic perovskite phases. Maximum d33 values were *150 pC/N for x = 0.03, with positive strains of *0.25 %; the x = 0.04 composition had a d33 * 133 pC/N and strain of 0.35 % (bipolar electric field, 50 kV/ cm, 1 Hz). Depolarisation temperature Td is an important selection criterion for any lead-free piezoelectric for actuator or sensor applications. A Td of *220 C for x = 0.03 is *100 C higher than for the widely reported Na0.5Bi0.5TiO3–BaTiO3 system, yet d33 values and strains are similar, suggesting the new material is worthy of further attention as a lead-free piezoceramic for elevated temperature applications.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Panda PK (2009) J Mater Sci 44:5049-5062.
    • 2. Xu C, Lin D, Kwok KW (2008), Solid State Sciences 10, 934-940.
    • 3. Ma C, Tan X (2010) Solid State Communications 150, 1497-1500.
    • 4. Utami BS, Chen C-N, Chou CC, Liang JY, Chen P-Y, Chen C-S (2013) Ceramics International, 39: S175-S179.
    • 5. Zhang Y-R, Li J-F, Zhang B-P, Peng C-E (2008) J Appl Phys 103, 074109(1- 6).
    • 6. Sasaki A, Chiba T, Mamiya Y, Otsuki E (1999) Jpn J Appl Phys 38, 5564 5567.
    • 7. Takenaka T, Kei-ichi M, Koichiro S (1991) Jpn J Appl Phys 30, 2236.
    • 8. Chu B-J, Chen D-R, Li G-R, Yin Q-R (2002) J Eur Ceram Soc 22, 2115.
    • 9. Rödel J, Jo W, Seifert KTP, Anton E-M, Granzow T, Damjanovic D (2009) J Am Ceram Soc 92(6):1153-1177.
    • 10. Anton E-M, Jo W, Damjanovic D, Rödel J (2011), J Appl Phys 110, 094108(1- 13).
    • 11. Zeb A, Milne SJ (2013) J Am Ceram Soc 96(10):3089-3093.
    • 12. Zeb A, Milne SJ (2014) J Am Ceram Soc 97(8):2413-2415.
    • 13. Kruea-In C, Rujijanagul G, Zhu FY, Milne SJ (2012) Appl Phys Lett 100(20), 202904.
    • 14. Zeb A, Milne SJ. (2013) J Am Ceram Soc 96(9), 2887-2892.
    • 15. Zeb A, Bai Y, Button T, Milne SJ (2014) J Am Ceram Soc 97(8), 2479-2483
    • 16. Zeb A, Milne, SJ (2014) J Eur Ceram Soc 34(7), 1727-1732.
    • 17. Ranjan R, Dviwedi A (2005) Solid state communications, 135(6): 394-399.
    • 18. Milne SJ, West AR (1983) Solid State Ionics 9-10: 865-868.
    • 19. Milne SJ, West AR (1984) Mater Research Bull 19(6) 705-710.
    • 20. Milne SJ, West AR (1985) Solid State Chem 57(2): 166-177.
    • 21. Zhao W, Zuo, R. (2013) Ceramics International, 39(8); 9121-9124.
    • 22. Zuo W, Zuo R, Zhao W. (2013) Ceramics International, 39(1);.725-730.
    • 23. Coondoo I, Panwar N, Kholkin A. (2013). Journal of Advanced Dielectrics, 3(02).
    • 24. Chu B-J, Chen D-R, Li G-R, Yin Q-R, (2002) J. Eur. Ceram. Soc.,22; 2115- 2121.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article