Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hosking, Niamh C. (2008)
Languages: English
Types: Unknown
Vehicle bodies are generally constructed from galvanized steel, which, together with phosphate and e-coat paint treatments, ensures corrosion resistance. The use of these materials alone cannot provide adequate corrosion protection to certain features that are inherent to vehicle body construction but are also vulnerable to corrosion, such as cut edges of panels and creviced joints. The use of further corrosion protection measures, (e.g. sealers, lacquers and waxes), is undesirable because they require additional manufacturing processes, increase weight and reduce recyclability of the vehicle. The potential benefits of using zinc-magnesium alloy coated steel (ZMG) as a substitute for conventional galvanized steel were investigated in this work. Cyclic corrosion testing in sodium chloride and acid rain-based environments was conducted on panels of ZMG and conventional galvanized steel and the resistance of each material to red rust initiation and propagation was assessed. ZMG offered approximately a 3-fold improvement in red rust resistance compared to galvanized steel in the sodium chloride test but ZMG's corrosion benefit was attenuated in the acid rain environment. Cyclic corrosion testing was also conducted on painted test panels incorporating geometric features; enhanced edge and crevice corrosion resistance was also observed for panels constructed from ZMG. Corrosion products formed in each environment were characterized using a suite of analysis techniques and mechanisms to explain the enhanced corrosion resistance of ZMG were proposed based on these products and on the literature. An inhibiting corrosion protection mechanism was suggested for ZMG whereby cathodic activity was retarded via the precipitation of insulating, sparingly soluble magnesium hydroxide. Further inhibition of cathodic activity has been attributed to the specific oxide layer (possibly magnesium oxyhydroxide doped with zinc) present at the ZMG surface. The observed efficacy of the corrosion protection mechanisms suggests that ZMG may allow improvement of the vehicle body corrosion protection system for vehicle weight and recyclability targets.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 5.3.6. Crevice Corrosion Test Panels 5.4. Corrosion Test Methods 5.4.1. Electrochemical Characterization 5.4.2. Volvo Cabinet Test Method 5.4.3. Ford Cabinet Test Method 5.5. Corrosion Resistance Assessments 5.5.1. Red Rust Area 5.5.2. Delaminated Paint Area 5.5.3. Scribe Line Creep 5.6. Corrosion Product Characterization 5.6.1. Cross-sectional Analysis: Sample Preparation 5.6.2. Cross-sectional Analysis: Microscopy N.C. Hosking, M.A. Strom, P.H. Shipway, C.D. Rudd: Corrosion science, v.49 n.9 (2007) 3669-3695.
    • N.C. Hosking, M.A. Strom, P.H. Shipway, C.D. Rudd: Proc. EuroCorr, (2007) 09/09/07-13/09/07 Freiburg, Germany: European Federation of Corrosion.
    • F.W. Lutze, K.A. Smith, R. Mason, D. Nymberg, L.S. Thompson, C. Meade, L. McQuiston, R. Singleton, C. Handsy: Update on the developments of the SAE JZ334 laboratory cyclic corrosion test, (2003) Proc. SAE world congress 03/03/03-06/03/03, Michigan, USA: SAE 2003-01-1234.
    • T.K. Christman, IT. Stropki, C.K. Schoff: Evaluation of accelerated corrosion test procedures, (1989) Proc. automotive corrosion and prevention conference and exposition 04/12/89-06/12/89, Michigan, USA: SAE 892583.
    • T.S. Doppke, A.W. Bryant: The salt spray test- past, present and future, (1983) Proc. automotive corrosion and prevention conference and display 05/12/83-07/12/83, Michigan, USA: SAE 831815.
    • M.A. Strom, G. Strom, G. Strannhage: Making the best of corrosion testing, (2006) Proc. EuroCorr conference 24/09/06-28/09/06, Maastricht, Netherlands: European Corrosion Federation.
    • H.E. Townsend, D.C. McCune: Round-robin evaluation of a new standard laboratory test for cosmetic corrosion, (1997) Proc. international congress and exposition 24/02/97-27/02/97, Michigan, USA: SAE 970734.
    • C.R. Shastry, L.S. Thompson, F.W. Lutze: Performance of coatings for underbody structural components, (2001) Proc. SAE world congress 05/03/01-08/03/01, Michigan, USA: SAE 2001-01-0363.
    • F. Bovard, 1. Tardiff, T. Jafolla, D. McCune, G. Courval, K.A. Smith, F. Lee, J. Repp, S. Ramamurthy, R.J. Shaffer, F.M. Vartolas: Development of am improved cosmetic corrosion testfor finished aluminum autobody panels, (2007) Proc. SAE world congress 16/04/07-19104/07, Michigan, USA: SAE 2007-01-0417.
    • D. Thierry, N. Le Bozec, C. Lille, N. Arlt, A. Morizot, P.l Cunat: Basic considerations for the development of a corrosion test for stainless steels used for automotive applications, (2004) Proc. SAE world congress 08/03/04- 11103/04, Michigan, USA: SAE 2004-01-0887.
    • T. Wang, D. Nymberg, M. Strom: A comparative study of corrosion test environments at three proving grounds, (2003) Proc. SAE world congress 03/03/03-06/03/03, Michigan, USA: SAE 2003-01-1240.
    • S. Oh, B. Min: Development of accelerated corrosion test mode considering environmental condition, (2002) Proc. SAE world congress 04/03/02-07/03- 02, Michigan, USA: SAE 2002-01-1231.
    • T. Wang, G. Gao, J. Bomback, M. Ricketts: A vehicle micro corrosion environmental study of field and proving ground tests, (2001) Proc. SAE world congress 05/03/01-08/03/01, Michigan, USA: SAE 2001-01-0646.
    • J. Elvins, J.H. Sullivan, J.A. Spittle, D.A.Worsley: Corrosion engineering, science and technology, v.40 n.1 (2005) 43-50.
    • R. Hausbrand, M. Rohwerder, M. Stratmann, C. Schwerdt, B. Schuhmacher, G. Grundmeier: Proc. Galvatech 2001, Belgium:Stahleisen (2001) pp.161- 167.
    • R. Hausbrand, M. Stratmann, M. Rohwerder: Steel research, v.74 n.7 (2003) 453-458.
    • V.E. Carter: Metallic coatings for corrosion control, (1977) London: Newnes-Butterworth, Chap.4, p.l 08.
    • C. Belleau, D.K. Kelley: Effects of galvanized steel defects on painted appearance of exposed panels, (1983) Proc. international congress and exposition 28/02/83-04/03/83, Michigan, USA: SAE 830491.
    • A.R. Marder: Progress in materials science, v.45 (2000) 191-271.
    • M. Maeda, T. Ito, T. Aiko, K. Hashimoto, H. Furukawa, K. Yanagi: Installation of a continuous zinc vapour deposition line, (1986) Proc.
    • international congress and exposition 24/02/86-28/02/86, Michigan. USA: SAE 860272.
    • A.R. Marder: Materials selection and design, v.20 (1997) ASM handbook.
    • p.470.
    • C. Belleau, D.K. Kelley: Galvanized coating effects in outer body panels, (1983) Proc. international congress and exposition 28/02/83-04/03/83, Michigan, USA: SAE 830516.
    • B. Schulunacher, C. Schwerdt, U. Seyfert, O. Zimmer: Surface and coatings technology, v.163-164 (2003) 703-709.
    • C. Metzner, B. Scheffel, F.H. Roegner: New developments of PVD-layers onto metallic sheets and strips, (2000) Proc. 43rd annual technical conference, 15/04/00-20/04/00, Denver,USA: Society of vacuum coaters.
    • Klages, M. Kretscmer, U. Seyfert, F. Forster, H.J. Tiller: Advanced engineering materials, v.3 n.9 (2001) 681-689.
    • T.E. Graedel: Journal of the electrochemical society, v.136 n.4 (1989) 193C203C.
    • In: W.W. Kirk, H.H. Lawson, (Eds.): Atmospheric corrosion, (1994) ASTM STP 1239 Philadelphia USA, pp.VI.I-VI.15.
    • T. Falk, J.E. Svensson, L.G. Johansson: Journal of the electrochemical society, v.145 n.l (1998) 39-44.
    • R. Lindstrom, J.E. Svensson, L.G. Johansson: Journal of the electrochemical society, v.147 n.5 (2000) 1751-1757.
    • 101. R.S. Jayasree, V.P. Mahadevan Pillai, V.U. Nayar, I. Odnevall, G. Keresztury: Materials chemistry and physics, v.99 (2006) 474-478.
    • 107. E. Almeida, M. Morcillo, B. Rosales: British corrosion journal, v.35 n.4 (2000) 284-288.
    • 109. I. Odnevall, M. Westdahl: Corrosion science, v.34 n.8 (1993) 1231-1242.
    • 110. I. Odnevall, C. Leygraf: Corrosion science, v.36 n.6 (1994) 1077-1087.
    • 112. R. Lindstrom, L.O. Johansson, J.E. Svensson: Journal of the electrochemical society, v.150 n.l2 (2003) B583-B588.
    • 113. R. Ramanauskas: Applied surface science, v.153 (1999) 53-64.
    • 115. 1.E. Svensson, L.G. Johansson: Corrosion science, v.34 n.5 (1993) 721-740.
    • 116. W. Feitknecht: Chemistry and industry, v.5 (1959) 1102-1109.
    • 117. R. Lindstrom, 1.E. Svensson, L.G. Johansson: Journal of the electrochemical society, v.l49 n.4 (2002) BI03-BI07.
    • 118. D.C.W. Kannangara, B.E. Conway: Journal of the electrochemical society, v.134 n.4 (1987) 894-906.
    • 119. B.E. Conway, D.C.W. Kannangara: Journal of the electrochemical society, v.134 n.4 (1987) 906-918.
    • 120. T. Falk, J.E. Svensson, L.O. Johansson: Journal of the electrochemical society, v.145 n.9 (1998) 2993-2999.
    • 125. S. Magaino, M. Soga, K. Sobue, A, Kawaguchi, N. Ishida, H. Imai: Electrochimica acta, v.44 (1999) 4307-4312.
    • 132. I. Dehri, R.L. Howard, S.B. Lyon: Corrosion science, v.41 (1999) 141-154.
    • 143. Anon.: Periodic table of the elements, [on-line] available at: http://www.edax.com/service/periodic.cfin [Accessed 18th July 2007].
    • 144. D. Briggs, M.P. Seah: Practical surface analysis, Auger and X-ray photoelectron spectroscopy, (1990) v.l 2nd ed., Wiley & Sons, Chichester, UK pp.599-609.
    • 145. C.D Wagner, A.V. Naumkin, A. Kraut-Vass, J.W. Allison, C.J. Powell, J.R. Rumble Jr. : NIST X-ray photoelectron spectroscopy database, [on-line] available at: http://srdata.nist.gov/xps/ [Accessed is" July 2007].
    • 146. Anon.: Utilizing glow discharge in optical emission spectroscopy, [on-line] available at: http://www.leco.comlproducts/inorganic/gds/pdf/203-989.pdf [Accessed 18th July 2007].
    • 148. V.1. Nefedov, M.N. Firsov, I.S. Shaplygin, 1982: Journal of electron spectroscopy related phenomena, v.26, n.l (1982) 65-78.
    • 149. G. Moretti, G. Fierro, M. Lo Jacono, P. Porta, 1989: Surface and interface analysis, v.14 (1989) 325-336.
    • 150. D.R. Evans: The corrosion and oxidation of metals, London: Edward Arnold Ltd. (1960) p.165.
    • 157. Z. Weiss: Journal of analytical atomic spectroscopy, v.16 (2001) 1275-1282.
    • 158. M.V. Pelaez, J.M. Costa-Fernandez, R. Pereiro, N. Bordel, A.Sanz-Medel: Journal of analytical atomic spectroscopy, v.18 (2003) 864-871.
    • 159. H.E. Townsend, D.C. McCune, R.J. Neville, R.D. Granata, W.A. Schumacher: Progress by the automotive and steel industries toward an improved laboratory cosmetic corrosion test, (1991) Proc. of the 5th automotive corrosion & prevention conference 21/10/91-23/10/91, Michigan,USA: SAE 912275.
    • I!I Simonkolleite Zfl5(OH)8CI2. H20 O()"'007-0155 I!I Zinc hydroxy carbonate hydrate Zn4(OH)6C03.H20
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article