Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Graham, L.E; Knack, J.J; Piotrowski, M.J; Wilcox, L.W; Cook, M.E; Wellman, C.H; Taylor, W; Lewis, L.A; Arancibia-Avila, P (2014)
Publisher: Wiley
Languages: English
Types: Article
Microbialites are mineral formations formed by microbial communities that are often dominated by cyanobacteria. Carbonate microbialites, known from Proterozoic times through the present, are recognized for sequestering globally significant amounts of inorganic carbon. Recent ecological work has focused on microbial communities dominated by cyanobacteria that produce microbial mats and laminate microbialites (stromatolites). However, the taxonomic composition and functions of microbial communities that generate distinctive clotted microbialites (thrombolites) are less well understood. Here, microscopy and deep shotgun sequencing were used to characterize the microbiome (microbial taxa and their genomes) associated with a single cyanobacterial host linked by 16S sequences to Nostoc commune Vaucher ex Bornet & Flahault, which dominates abundant littoral clotted microbialites in shallow, subpolar, freshwater Laguna Larga in southern Chile. Microscopy and energy-dispersive X-ray spectroscopy suggested the hypothesis that adherent hollow carbonate spheres typical of the clotted microbialite begin development on the rigid curved outer surfaces of the Nostoc balls. A surface biofilm included >50 nonoxygenic bacterial genera (taxa other than Nostoc) that indicate diverse ecological functions. The Laguna Larga Nostoc microbiome included the sulfate reducers Desulfomicrobium and Sulfospirillum and genes encoding all known proteins specific to sulfate reduction, a process known to facilitate carbonate deposition by increasing pH. Sequences indicating presence of nostocalean and other types of nifH, nostocalean sulfide:ferredoxin oxidoreductase (indicating anoxygenic photosynthesis), and biosynthetic pathways for the secondary products scytonemin, mycosporine, and microviridin toxin were identified. These results allow comparisons with microbiota and microbiomes of other algae and illuminate biogeochemical roles of ancient microbialites. © 2013 Phycological Society of America.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Airo, A. 2010. Biotic and abiotic controls on the morphological and textural development of modern microbialites at Lago Sarmiento, Chile. PhD dissertation, Stanford University, Stanford, CA, 112 pp.
    • Amin, S. A., Parker, M. S. & Armbrust, E. V. 2012. Interactions between diatoms and bacteria. Microbiol. Mol. Biol. Rev. 76:667-84.
    • Arima, H., Horiguchi, N., Takaichi, S., Kofuji, R., Ishida, K. I., Wada, K. & Sakamoto, T. 2012. Molecular genetic and chemotaxonomic characterization of the terrestrial cyanobacterium Nostoc commune and its neighboring species. FEMS Microbiol. Ecol. 79:35-45.
    • Arp, G., Reimer, A. & Reitner, J. 2001. Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic Oceans. Science 292:1701-4.
    • Balskus, E. P. & Walsh, C. T. 2010. The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science 329:1653-6.
    • Banks, E. D., Taylor, M. N., Gulley, J., Lubbers, B. R., Giarrizo, J. G., Bullen, H. A., Hoehler, T. M. & Barton, H. A. 2010. Bacterial calcium carbonate precipitation in cave environments: a function of calcium homeostasis. Geomicrobiol J. 27:444-54.
    • Baumgartner, L. K., Reid, R. P., Dupraz, C., Decho, A. W., Buckley, D. H., Spear, J. R., Przekop, K. M. & Visscher, P. T. 2006. Sulfate-reducing bacteria in microbial mats: changing paradigms, new discoveries. Sediment. Geol. 185:131-45.
    • Bertrand, E. M., Saito, M. A., Jeon, Y. J. & Neilan, B. A. 2011. Vitamin B12 biosynthesis gene diversity in the Ross Sea: the identification of a new group of putative polar B12 producers. Environ. Microbiol. 13:1285-98.
    • Braissant, O., Decho, A. W., Dupraz, C., Glunk, C., Prezkop, K. M. & Visscher, P. T. 2007. Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5:401-11.
    • Breitbart, M., Hoare, A., Nitti, A., Siefert, J., Haynes, M., Dinsdale, E., Edwards, R., Souza, V., Rohwer, F. & Hollander, D. 2009. Metagenomic and stable isotopic analyses of modern freshwater microbialites in Cuatro Cienagas, Mexico. Environ. Microbiol. 11:16-34.
    • Burne, R. V. & Moore, L. S. 1987. Microbialites: organosedimentary deposits of benthic microbial communities. Palaios 2:241-54.
    • Couradeau, E., Benzerara, K., Moreira, D., Gerard, E., Kazmierczak, J., Tavera, R. & Lopez-Garcia, P. 2011. Prokaryotic and eukaryotic community structure in field and cultured microbialites from the alkaline Lake Alchichica (Mexico). PLoS ONE 6:e28767. doi:10.1371/journal.pone.0028767.
    • Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J. & Smith, A. G. 2005. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90-3.
    • Davidov, Y. & Jurkevitch, E. 2004. Diversity and evolution of Bdellovibrio-and-like organisms (BALOs), reclassification of Bacteriovorax starrii as Peredibacter starrii gen. nov., comb. nov., and description of the Bacteriovorax-Peredibacter clade as Bacteriovoraceae fam. nov. Int. J. Syst. Evol. Microbiol. 54:1439-52.
    • De los Rios, P. & Soto, D. 2009. Limnological studies in lakes and ponds of Torres del Paine National Park (51° S, Chile). Anales Instituto Patagonia (Chile) 37:63-71.
    • Dittmann, E., Fewer, D. P. & Neilan, B. A. 2012. Cyanobacterial toxins: biosynthetic routes and evolutionary roots. FEMS Microbiol. Rev. 37:23-43.
    • Donia, M. S., Fricke, W. F., Partensky, F., Cox, J., Elshahawi, S. I., White, J. R., Phillippy, A. M. et al. 2011. Complex microbiome underlying secondary and primary metabolism in the tunicate-Prochloron symbiosis. Proc. Natl Acad. Sci. USA 108: E1423-32.
    • Dupraz, C. & Visscher, P. T. 2005. Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol. 13:429-38.
    • Dziallas, C. & Grossart, H. P. 2011. Temperature and biotic factors influence bacterial communities associated with the cyanobacterium Microcystis sp. Environ. Microbiol. 13:1632- 41.
    • Fredrickson, J. K., Romine, M. F., Beliaev, A. S., Auchtung, J. M., Driscol, M. E., Gardner, T. S., Nealson, K. H. et al. 2008. Towards environmental systems biology of Shewanella. Nat. Rev. Microbiol. 6:592-603.
    • Gaby, J. C. & Buckley, D. H. 2011. A global census of nitrogenase diversity. Environ. Microbiol. 13:1790-9.
    • Gao, Q. & Garcia-Pichel, F. 2011. Microbial ultraviolet sunscreen. Nat. Rev. Microbiol. 9:791-802.
    • Garcia-Pichel, F., Al Horani, F., Ludwig, R., Farmer, J. & Wade, B. 2004. Balance between calcification and bioerosion in modern stromatolites. Geobiology 2:39-57.
    • Grabovich, M., Gavrish, E., Kuever, J., Lysenko, A. M., Podkopaeva, D. & Dubina, G. 2006. Proposal of Giesbergeria voronezhensis gen. nov., sp. nov. and G. kuznetsovii sp. nov. and reclassification of [Aquaspirillum] annulus, [A.] sinuosum and [A.] giesbergeri as Giesbergeria annulus comb. nov., G. sinuosa comb. nov. and G. giesbergeri comb. nov., and [Aquaspirillum] metamorphum and [A.] psychrophylum as Simiplicispira metamorpha gen. nov., comb. nov. and S. psychrophila comb. nov. Int. J. Syst. Evol. Microbiol. 56:569-76.
    • Graham, L. E., Graham, J. M. & Wilcox, L. W. 2009. Algae, 2nd edn. Benjamin Cummings/Pearson, San Francisco, 616 pp.
    • Green, S. J. & Jahnke, L. L. 2010. Molecular investigations and experimental manipulations of microbial mats: a view to paleomicrobial ecosystems. In Seckbach, J. & Oren, A. [Eds.] Microbial Mats: Modern and Ancient Microorganisms in Stratified Systems. Springer, New York, NY, pp. 183-206.
    • Harris, J. K., Caporaso, J. G., Walker, J. L., Spear, J. R., Gold, N. J., Robertson, C. E., Hugenholtz, P. et al. 2012. Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME J. 7:50-60.
    • Huson, D. H., Mitra, S., Weber, N., Ruscheweyh, H. & Schuster, S. C. 2011. Integrative analysis of environmental sequences using MEGAN4. Genome Res. 21:1552-60.
    • Kehr, J.C., Picchi, D. G. & Dittmann, E. 2011. Natural product biosyntheses in cyanobacteria: a treasure trove of unique enzymes. Beilstein J. Org. Chem. 7:1622-36.
    • Kempe, S., Kazmierczak, J., Landmann, G., Konuk, T., Reimer, A. & Lipp, A. 1991. Largest known microbialites discovered in Lake Van, Turkey. Nature 349:605-8.
    • Laval, B., Cadym, S. L., Pollack, J. C., McKay, C. P., Bird, J. S., Grotzinger, J. P., Ford, D. C. & Bohm, H. R. 2000. Modern freshwater microbialite analogues for ancient dendritic reef structures. Nature 407:626-9.
    • Ley, R. E., Harris, J. K., Wilcox, J., Spear, J. R., Miller, S. R., Bebout, B. M., Maresca, J. A., Bryant, D. A., Sogin, M. L. & Pace, N. R. 2006. Unexpected diversity and complexity of the Guerro Negro hypersaline microbial mat. Appl. Environ. Microbiol. 72:3685-95.
    • Lin, D. X., Wang, E. T., Tang, H., Han, T. X., He, Y. R., Guan, S. H. & Chen, W. X. 2008. Shinellla kummerowiae sp. nov., a symbiotic bacterium isolated from root nodules of the herbal legume Kummerowia stipulacea. Int. J. Syst. Evol. Microbiol. 58:1409-13.
    • Lopez-Garcia, P., Kazmierczak, J., Benzerara, K., Kempe, S., Guyot, F. & Moreira, D. 2005. Bacterial diversity and carbonate precipitation in the giant microbialites from the highly alkaline Lake Van, Turkey. Extremophiles 9:263-74.
    • Mata, S. A. & Bottjer, D. J. 2012. Microbes and mass extinctions: paleoenvironmental distribution of microbialites during times of biotic crisis. Geobiology 10:3-24.
    • Myshrall, K. L., Mobberley, J. M., Green, S. J., Visscher, P. T., Havemann, S. A., Reid, R. P. & Foster, J. S. 2010. Biogeochemical cycling and microbial diversity in the thrombolitic microbialites of Highborne Cay, Bahamas. Geobiology 8:337- 54.
    • Noar, J. D. & Buckley, D. H. 2009. Ideonella azotifigens sp. nov., an aerobic diazotroph of the Betaproteobacteria isolated from grass rhizosphere soil, and emended description of the genus Ideonella. Int. J. Syst. Evol. Microbiol. 59:1941-6.
    • Oliver, L. K. & Rowland, S. M. 2002. Microbialite reefs at the close of the Proterozoic eon: the Middle Member Deep Spring Formation at Mt. Dunfee, Nevada. In Corsetti, F. A. [Ed.] Proterozoic-Cambrian of the Great Basin and Beyond. Pacific Section SEPM Book 93. Tulsa, OK, pp. 97-122.
    • Parveen, B., Ravet, V., Djediat, C., Mary, I., Quiblier, C., Debroas, D. & Humbert, J. F. 2013. Bacterial communities associated with Microcystis colonies differ from free-living communities living in the same ecosystem. Environ. Microbiol. Reports 5:716-24.
    • Pikuta, E. V., Hoover, R. B., Marsic, D., Whitman, W. B., Lipa, B., Tang, J. & Krader, P. 2009. Proteocatella sphenisci gen. nov., sp. nov., a psychrotolerant, spore-forming anaerobe isolated from penguin guano. Int. J. Syst. Evol. Microbiol. 59:2302-7.
    • Posada, D. & Crandall, K. A. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817-8.
    • Rehakova, K., Johansen, J. R., Cassamatta, D. A., Xuesong, L. & Vincent, J. 2007. Morphological and molecular characterization of selected desert soil cyanobacteria: three species new to science including Mohavia pulchra gen. et sp. nov. Phycologia 46:481-502.
    • Rice, P., Longden, I. & Bleasby, A. 2000. EMBOSS: the European molecular biology open software suite. Trends Genet. 16:276- 7.
    • Riding, R. 2011. Microbialites, stromatolites, and thrombolites. In Reitner, J. & Thiel, V. [Eds.] Encyclopedia of Geobiology. Encyclopedia of Earth Science Series. Springer, Heidelberg, pp. 635-54.
    • Rivas, T., Velazquez, E., Willems, A., Viscaino, N., Subba-Rao, N. S., Mateos, P. F., Gillis, M., Dazzo, F. B. & Martinez-Molina, E. 2002. A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L.F.) Druce. Appl. Environ. Microbiol. 68:5217-22.
    • Rohrlack, T., Christoffersen, K., Kaebernick, M. & Neilan, B. A. 2004. Cyanobacterial protease inhibitor microviridin J causes a lethal molting disruption in Daphnia pulicaria. Appl. Environ. Microbiol. 70:5047-50.
    • Schirrmeister, B. E., de Vos, J. M. & Antonell, A. & Bagheri, H. C. 2013. Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. Proc. Natl Acad. Sci. USA 110:1791-6.
    • Schulze-Makuch, D., Lim, D., Laval, B., Turse, C., de Sousa Antonio, M. R., Chan, O., Pointing, S. B., Brady, A., Reid, D. & Irwin, L. N. 2013. Pavilion Lake microbialites: morphological, molecular and biochemical evidence for a cold-water transition to colonial aggregates. Life 3:21-37.
    • Sheehan, P. M. & Harris, M. T. 2004. Microbialite resurgence after the Late Ordovician extinction. Nature 430:75-8.
    • Siegesmund, M., Johansen, J. R., Karsten, U. & Friedl, T. 2008. Coleofasciculus gen. nov. (Cyanobacteria): morphological and molecular criteria for revision of the genus Microcoleus Gomont. J. Phycol. 44:1572-85.
    • Sikorski, J., Lapidus, A., Copeland, A., Del Rio, T. G., Nolan, M. & 31 others., 2010. Complete genome sequence of Sulfurospirillum deleyianum type strain (5175T). Standards Genet. Sci. 2:149-57.
    • Solari, M. A., Herve, F., Le Roux, J. P., Airo, A. & Sial, A. N. 2010. Paleoclimatic significance of lacustrine microbialites: a stable isotope case study of two lakes at Torres del Paine, southern Chile. Palaeogeogr. Palaeoclimatol. Palaeoecol. 297:70- 82.
    • Soule, T., Stout, V., Swingley, W. D., Meeks, J. C. & Garcia-Pichel, F. 2007. Molecular genetics and genomic analysis of scytonemin biosynthesis in Nostoc punctiforme ATCC 29133. J. Bacteriol. 189:4465-72.
    • Spadafora, A., Perri, E., McKenzie, J. A. & Vasconcelos, C. 2010. Microbial biomineralization processes forming modern Ca: Mg carbonate stromatolites. Sedimentology 57:27-40.
    • Sun, S., Chen, J., Li, W., Altinatas, I., Lin, A., Peltier, S., Stocks, K., Allen, E. E., Ellisman, M., Grethe, J. & Wooley, J. 2011. Community cyberinfrastructure for Advanced Microbial Ecology Research and Analysis: the CAMERA resource. Nucleic Acids Res. 39:D546-51.
    • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731- 9.
    • Tang, D., Shi, X. & Jiang, G. 2013. Mesoproterozoic biogenic thrombolites from the North China platform. Int. J. Earth Sci. 102:401-13.
    • Van Lith, Y., Warthmann, R., Vasconcelos, C. & McKenzie, J. A. 2003. Sulphate-reducing bacteria induce low-temperature Cadolomite and high Mg-calcite formation. Geobiology 1:71-9.
    • Wisniewski-Dye, F., Borziak, K., Khalsa-Moyers, G., Alexandre, G., Sukharnikov, L. O., Wuichet, K., Hurst, G. B. et al. 2011. Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS One 7:e1002430.
    • Yoshida, N., Higashimura, E. & Saeki, Y. 2010. Catalytic biomineralization of fluorescent calcite by the thermophilic bacterium Geobacillus thermoglucosidasius. Appl. Environ. Microbiol. 76:7322-7.
    • Zamarren~o, D. V., Inkpen, R. & May, E. 2009. Carbonate crystals precipitated by freshwater bacteria and their use as a limestone consolidant. Appl. Environ. Microbiol. 75:5981-90.
    • Ziemert, N., Ishida, K., Weiz, A., Hertweck, C. & Dittmann, E. 2010. Exploiting the natural diversity of microviridin gene clusters for discovery of novel tricyclic depsipeptides. Appl. Environ. Microbiol. 76:3568-74.
    • Zulkifly, S. B., Hanshew, A., Young, E. B., Lee, P., Graham, M. E., Graham, M. E., Piotrowski, M. & Graham, L. E. 2012. The epiphytic microbiota of the globally widespread macroalga Cladophora glomerata (Chlorophyceae, Cladophorales). Am. J. Bot. 99:1542-53.
    • 2139.10, Metagene H7CMJNQ02GWNM5.1, and Contig 996.3).
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Funded by projects

  • NSF | Microbiomes of Charophycean...

Cite this article