LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Aguado-Puente, Pablo; Bristowe, Nicholas. C.; Yin, Binglun; Shirasawa, Raku; Ghosez, Philippe; Littlewood, Peter B.; Artacho, Emilio (2015)
Publisher: American Physical Society
Languages: English
Types: Article
Subjects: 11000/11, Condensed Matter - Mesoscale and Nanoscale Physics, QD473, Condensed Matter - Materials Science, 11000/12, 11000/13

Classified by OpenAIRE into

arxiv: Condensed Matter::Materials Science
The formation of a two-dimensional electron gas at oxide interfaces as a consequence of polar discontinuities has generated an enormous amount of activity due to the variety of interesting effects it gives rise to. Here we study under what circumstances similar processes can also take place underneath ferroelectric thin films. We use a simple Landau model to demonstrate that in the absence of extrinsic screening mechanisms a monodomain phase can be stabilized in ferroelectric films by means of an electronic reconstruction. Unlike in the LaAlO$_3$/SrTiO$_3$ heterostructure, the emergence with thickness of the free charge at the interface is discontinuous. This prediction is confirmed by performing first principles simulations of free standing slabs of PbTiO$_3$. The model is also used to predict the response of the system to an applied electric field, demonstrating that the two-dimensional electron gas can be switched on and off discontinuously and in a non-volatile fashion. Furthermore, the reversal of the polarization can be used to switch between a two-dimensional electron gas and a two-dimensional hole gas, which should, in principle, have very different transport properties. We discuss the possible formation of polarization domains and how such configuration competes with the spontaneous accumulation of free charge at the interfaces.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastia´n, Spain 2CIC Nanogune, Tolosa Hiribidea 76, 20018 San Sebasti´an, Spain 3Theoretical Materials Physics, University of Li`ege, B-4000 Sart-Tilman, Belgium 4Department of Materials, Imperial College London, London SW7 2AZ, UK 5Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China 6Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK† 7Physical Sciences and Engineering, Argonne National Laboratory, Argonne, Illinois 60439, USA 8University of Chicago, James Frank Institute, Chicago, Illinois 60637, USA 9Theory of Condensed Matter, Cavendish Laboratory, University of Cambridge, J. J. Thomson Ave, Cambridge CB3 0HE, UK 10Basque Foundation for Science Ikerbasque, 48013 Bilbao, Spain (Dated: July 9, 2015) ∗ † Current address: Sony Corporation, Atsugi-shi, Kanagawa, 243-0021, Japan
    • 1 A. Ohtomo, D. A. Muller, J. L. Grazul, and H. Y. Hwang, Nature 419, 378 (2002).
    • 2 A. Ohtomo and H. Y. Hwang, Nature 427, 423 (2004).
    • 3 N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A.- S. Ru¨etschi, D. Jaccard, M. Gabay, D. A. Muller, J.-M. Triscone, and J. Mannhart, Science 317, 1196 (2007).
    • 4 L. Li, C. Richter, S. Paetel, T. Kopp, J. Mannhart, and R. C. Ashoori, Science 332, 825 (2011).
    • 5 M. Stengel and D. Vanderbilt, Phys. Rev. B 80, 241103(R) (2009).
    • 6 N. Nakagawa, H. Y. Hwang, and D. a. Muller, Nature Mater. 5, 204 (2006).
    • 7 A. Annadi, Q. Zhang, X. Renshaw Wang, N. Tuzla, K. Gopinadhan, W. M. Lu¨, A. Roy Barman, Z. Q. Liu, A. Srivastava, S. Saha, Y. L. Zhao, S. W. Zeng, S. Dhar, E. Olsson, B. Gu, S. Yunoki, S. Maekawa, H. Hilgenkamp, T. Venkatesan, and Ariando, Nat. Commun. 4, 1838 (2013).
    • 8 M. L. Reinle-Schmitt, C. Cancellieri, D. Li, D. Fontaine, M. Medarde, E. Pomjakushina, C. W. Schneider, S. Gariglio, P. Ghosez, J.-M. Triscone, and P. R. Willmott, Nat. Commun. 3, 932 (2012).
    • 9 S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Science 313, 1942 (2006).
    • 10 N. C. Bristowe, E. Artacho, and P. B. Littlewood, Phys. Rev. B 80, 045425 (2009).
    • 11 C. W. Bark, D. a. Felker, Y. Wang, Y. Zhang, H. W. Jang, C. M. Folkman, J. W. Park, S. H. Baek, H. Zhou, D. D. Fong, X. Q. Pan, E. Y. Tsymbal, M. S. Rzchowski, and C. B. Eom, Proc. Natl. Acad. Sci. 108, 4720 (2011).
    • 12 V. T. Tra, J.-W. Chen, P.-C. Huang, B.-C. Huang, Y. Cao, C.-H. Yeh, H.-J. Liu, E. a. Eliseev, A. N. Morozovska, J.- Y. Lin, Y.-C. Chen, M.-W. Chu, P.-W. Chiu, Y.-P. Chiu, L.-Q. Chen, C.-L. Wu, and Y.-H. Chu, Adv. Mater. 25, 3357 (2013).
    • 13 M. K. Niranjan, Y. Wang, S. S. Jaswal, and E. Y. Tsymbal, Phys. Rev. Lett. 103, 016804 (2009).
    • 14 Y. Wang, M. K. Niranjan, S. S. Jaswal, and E. Y. Tsymbal, Phys. Rev. B 80, 165130 (2009).
    • 15 K. D. Fredrickson and A. A. Demkov, Phys. Rev. B 91, 115126 (2015).
    • 16 P. Garc´ıa-Ferna´ndez, P. Aguado-Puente, and J. Junquera, Phys. Rev. B 87, 085305 (2013).
    • 17 C. Thompson, C. M. Foster, J. A. Eastman, and G. B. Stephenson, Appl. Phys. Lett. 71, 3516 (1997).
    • 18 M. J. Bedzyk, A. Kazimirov, D. L. Marasco, T.-L. Lee, C. M. Foster, G.-R. Bai, P. F. Lyman, and D. T. Keane, Phys. Rev. B 61, R7873 (2000).
    • 19 S. K. Streiffer, J. A. Eastman, D. D. Fong, C. Thompson, A. Munkholm, M. V. Ramana Murty, O. Auciello, G. R. Bai, and G. B. Stephenson, Phys. Rev. Lett. 89, 067601 (2002).
    • 20 D. D. Fong, G. B. Stephenson, S. K. Streiffer, J. A. Eastman, O. Auciello, P. H. Fuoss, and C. Thompson, Science 304, 1650 (2004).
    • 21 D. D. Fong, C. Cionca, Y. Yacoby, G. B. Stephenson, J. A. Eastman, P. H. Fuoss, S. K. Streiffer, C. Thompson, R. Clarke, R. Pindak, and E. A. Stern, Phys. Rev. B 71, 144112 (2005).
    • 22 D. A. Tenne, P. Turner, J. D. Schmidt, M. Biegalski, Y. L. Li, L. Q. Chen, A. Soukiassian, S. Trolier-McKinstry, D. G. Schlom, X. X. Xi, D. D. Fong, P. H. Fuoss, J. A. Eastman, G. B. Stephenson, C. Thompson, and S. K. Streiffer, Phys. Rev. Lett. 103, 177601 (2009).
    • 23 C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. a. Demkov, and V. Narayanan, Nature Nano. 8, 748 (2013).
    • 24 N. C. Bristowe, P. Ghosez, P. B. Littlewood, and E. Artacho, J. Phys.: Condens. Matter 26, 143201 (2014).
    • 25 K. F. Garrity, K. M. Rabe, and D. Vanderbilt, Phys. Rev. Lett . 112, 127601 (2014).
    • 26 N. C. Bristowe, P. B. Littlewood, and E. Artacho, Phys. Rev. B 83, 205405 (2011).
    • 27 N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, Phys. Rev. Lett . 80, 1988 (1998).
    • 28 A. K. Tagantsev, Ferroelectrics 69, 321 (1986).
    • 29 M. Stengel, C. J. Fennie, and P. Ghosez, Phy. Rev. B 86, 094112 (2012).
    • 30 We are using parameters corresponding to PbTiO3 strained in-plane to an implicit SrTiO3 substrate. The corresponding parameters, obtained from first principles calculations are: PS = 0.78 C/m2, χη = 26, ε∞ = 7, ge/e2 = 1.2 · 1037 m−2J−1, and gh/e2 = 2.5 · 1037 m−2J−1. For the study of the competition with a polydomain phase we use Σ = 130 mJ/m2 (from Ref. 63), εz = ε∞ + (χη + 1) = 35, and εx = 185.
    • 31 A. D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, and J.-M. Triscone, Nature 456, 624 (2008).
    • 32 B. Forg, C. Richter, and J. Mannhart, Appl. Phys. Lett. 100, 053506 (2012).
    • 33 Z. S. Popovi´c, S. Satpathy, and R. M. Martin, Phys. Rev. Lett. 101, 256801 (2008).
    • 34 P. Delugas, A. Filippetti, V. Fiorentini, D. I. Bilc, D. Fontaine, and P. Ghosez, Phys. Rev. Lett. 106, 166807 (2011).
    • 35 B. Yin, P. Aguado-Puente, S. Qu, and E. Artacho, arXiv:1506.04865.
    • 36 D. G. Schlom, L.-Q. Chen, C.-B. Eom, K. M. Rabe, S. K. Streiffer, and J.-M. Triscone, Annual Review of Materials Research 37, 589 (2007).
    • 37 D. D. Fong, A. M. Kolpak, J. A. Eastman, S. K. Streiffer, P. H. Fuoss, G. B. Stephenson, C. Thompson, D. M. Kim, K. J. Choi, C. B. Eom, I. Grinberg, and A. M. Rappe, Phys. Rev. Lett . 96, 127601 (2006).
    • 38 J. E. Spanier, A. M. Kolpak, J. J. Urban, I. Grinberg, L. Ouyang, W. S. Yun, A. M. Rappe, and H. Park, Nano Lett. 6, 735 (2006).
    • 39 R. V. Wang, D. D. Fong, F. Jiang, M. J. Highland, P. H. Fuoss, C. Thompson, A. M. Kolpak, J. A. Eastman, S. K. Streiffer, A. M. Rappe, and G. B. Stephenson, Phys. Rev. Lett. 102, 047601 (2009).
    • 40 G. B. Stephenson and M. J. Highland, Phys. Rev. B 84, 064107 (2011).
    • 41 N. C. Bristowe, M. Stengel, P. B. Littlewood, J. M. Pruneda, and E. Artacho, Phys. Rev. B 85, 024106 (2012).
    • 42 C. Cen, S. Thiel, G. Hammerl, C. W. Schneider, K. E. Andersen, C. S. Hellberg, J. Mannhart, and J. Levy, Nature Mater. 7, 298 (2008).
    • 43 Y. Li, S. N. Phattalung, S. Limpijumnong, J. Kim, and J. Yu, Phys. Rev. B 84, 245307 (2011).
    • 44 L. Yu and A. Zunger, Nat. Commun. 5, 5118 (2014).
    • 45 M. Stengel, N. A. Spaldin, and D. Vanderbilt, Nature Phys. 5, 304 (2009).
    • 46 J. M. Soler, E. Artacho, J. D. Gale, A. Garc´ıa, J. Junquera, P. Ordejo´n, and D. Sa´nchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).
    • 47 H. Monkhorst and J. Pack, Physical Review B 13, 5188 (1976).
    • 48 J. Moreno and J. M. Soler, Phys. Rev B 45, 13891 (1992).
    • 49 M. Hosoda, Y. Hikita, H. Y. Hwang, and C. Bell, Applied Physics Letters 103, 103507 (2013).
    • 50 N. Ortega, a. Kumar, J. F. Scott, D. B. Chrisey, M. Tomazawa, S. Kumari, D. G. B. Diestra, and R. S. Katiyar, Journal of Physics: Condensed Matter 24, 445901 (2012).
    • 51 C. Thompson, D. D. Fong, R. V. Wang, F. Jiang, S. K. Streiffer, K. Latifi, J. a. Eastman, P. H. Fuoss, and G. B. Stephenson, Appl. Phys. Lett. 93, 182901 (2008).
    • 52 Y. Chen, F. Trier, T. Kasama, D. V. Christensen, N. Bovet, Z. I. Balogh, H. Li, K. T. S. Thyd´en, W. Zhang, S. Yazdi, P. Norby, N. Pryds, and S. r. Linderoth, Nano Lett. 15, 1849 (2015).
    • 53 C. Kittel, Phys. Rev. 70, 965 (1946).
    • 54 T. Mitsui and J. Furuichi, Phys. Rev. 90, 193 (1953).
    • 55 T. Ozaki and J. Ohgami, J. Phys.: Condens. Matter 7, 1711 (1995).
    • 56 G. Catal´an, J. F. Scott, A. Schilling, and J. M. Gregg, J. Phys.: Condens. Matter 19, 022201 (2007).
    • 57 G. Catal´an, H. B´ea, S. Fusil, M. Bibes, P. Paruch, A. Barth´el´emy, and J. F. Scott, Phys. Rev. Lett. 100, 027602 (2008).
    • 58 R. J. Zeches, M. D. Rossell, J. X. Zhang, A. J. Hatt, Q. He, C.-H. Yang, A. Kumar, C. H. Wang, A. Melville, C. Adamo, G. Sheng, Y.-H. Chu, J. F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L. Q. Chen, D. G. Schlom, N. A. Spaldin, L. W. Martin, and R. Ramesh, Science 326, 977 (2009).
    • 59 A. J. Hatt, N. A. Spaldin, and C. Ederer, Phys. Rev. B 81, 054109 (2010).
    • 60 O. Di´eguez, O. E. Gonz´alez-V´azquez, J. C. Wojdel, and J. ´In˜iguez, Phys. Rev. B 83, 094105 (2011).
    • 61 W. Ren, Y. Yang, O. Di´eguez, J. ´In˜iguez, N. Choudhury, and L. Bellaiche, Phys. Rev. Lett. 110, 187601 (2013).
    • 62 P. Chen, N. J. Podraza, X. S. Xu, A. Melville, E. Vlahos, V. Gopalan, R. Ramesh, D. G. Schlom, and J. L. Musfeldt, Appl. Phys. Lett. 96, 131907 (2010).
    • 63 B. Meyer and D. Vanderbilt, Phys. Rev. B 65, 104111 (2002).
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.