LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bigg, G.R.; Clark, C.D.; Hughes, A.L.C. (2008)
Publisher: Elsevier
Languages: English
Types: Article
Subjects:
Controversy exists over the extent of glaciation in Eastern Asia at the Last Glacial Maximum:\ud complete ice sheet cover vs. restricted mountain icefields (an area discrepancy equivalent to\ud 3.7 Greenland Ice Sheets). Current arguments favour the latter. However, significant last\ud glacial ice-rafted debris (IRD) exists in NW Pacific ocean cores, which must have been\ud sourced from a major ice sheet somewhere bordering the North Pacific. The origin of this IRD\ud is addressed through a combination of marine core analysis, iceberg trajectory modelling and\ud remote sensing of glacial geomorphology. We find compelling evidence for two stages of\ud glaciation centred on the Kamchatka area of maritime southeast Russia during the last glacial,\ud with ice extent intermediate in size between previous maximum and minimum\ud reconstructions. Furthermore, a significant increase in iceberg flux precedes, and\ud accompanies, a substantial marine core ash deposit at around 40ka BP. We speculate that\ud rapid decay of the first stage of the ice sheet may have triggered substantial volcanic activity.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] M.G. Grosswald, T.J. Hughes, The Russian component of an Arctic Ice Sheet during the Last Glacial Maximum, Quater. Sci. Rev. 21 (2002) 121-146.
    • [2] M.G. Grosswald, T.J. Hughes. “Back-arc” marine ice sheet in the Sea of Okhotsk. Russ. J. Earth Sci. 7 (2005) doi:10.2205/2005ES000180.
    • [3] J. Brigham-Grette, D.M. Hopkins, V.F. Ivanov, A. Basilyan, S.L. Benson, P. Heiser, V. Pushkar, Last interglacial and sea level history of coastal Chutotka Peninsula and St. Lawrence Island, western Beringia, Quater. Sci. Rev. 20 (2001) 419-436.
    • [4] J. Brigham-Grette, L.M. Gualtieri, O.Yu. Glushkova, T.D. Hamilton, D. Mostoller, A. Kotov, Chlorine-36 and 14C chronology support a limited last glacial maximum across central Chutotka, north-eastern Siberia, and no Beringian ice sheet, Quater. Res. 59 (2003) 386-398.
    • [5] L. Gualtieri, S. Vartanyan, J. Brigham-Grette, M. Patricia, P.M. Anderson, Pleistocene raised marine deposits on Wrangel Island, NE Siberia: implications for Arctic ice sheet history, Quater. Res. 59 (2003) 399-410.
    • [6] B. Felzer, Climate impacts of an ice sheet in East Siberia during the Last Glacial Maximum, Quater. Sci. Rev. 20 (2001) 437-447.
    • [7] Z. Wang, A.-S.B. Cochelin, L.A. Mysak, Y. Wang, Simulation of the last glacial inception with the green McGill Paleoclimate Model, Geophys. Res. Lett. 32 (2005) doi:10.1029/2005GL023047.
    • [8] C. Zweck, P. Huybrechts, Modelling of the northern hemisphere ice sheets during the last glacial cycle and glaciological sensitivity, J. Geophys. Res. 110 (2005) doi:10.1029/2005D07103.
    • E.M. Barbu, A.P. Julson (eds.) Init. Rep. ODP 126 (1990) doi:10.2973/odp.proc.ir.126.1990.
    • J.S. Creager, D.W. Scholl, P.R. Supko (eds.) Init. Rep. DSDP 19 (1973) doi:10.2973/dsdp.proc.19.1973.
    • G.L. Fox (ed.) Init. Rep. 169S (1998a) doi:10.2973/odp.proc.ir.169s.1998.
    • G.L. Fox (ed.) Init. Rep. 169 (1998b) doi:10.2973/odp.proc.ir.169.1998.
    • J.V. Gardner (ed.) Init. Rep. DSDP 32 (1975) doi:10.2973/dsdp.proc.32.1975.
    • S.A. Gorbarenko, J.R. Southon, L.D. Keigwin, M.V. Cherepanova, I.G. Gvodzeva. Late Pleistocene-Holocene oceanographic variability in the Okhotsk Sea: geochemical, lithological and paleontological evidence. Palaeogeog. Palaeoclimatol. Palaeoecol. 209 (2004) 281-301.
    • J.C. Ingle Jr., D.E. Karig, S.M. White. (eds.) Init. Rep. DSDP 31 (1975) doi:10.2973/dsdp.proc.31.1975
    • L.A. Krissek, J.J. Morley, D.K. Lofland. The occurrence, abundance, and composition of icerafted debris in sediments from Deep Sea Drilling Project Sites 579 and 580, northwest Pacific. In G.R. Heath, L.H. Burkle, et al. (eds.) Init. Rep. DSDP 86 (1985) Washington (U.S. Government Printing Press), 647-655.
    • L.A. Krissek. Late Cenozoic ice-rafting records from Leg 145 sites in the North Pacific: Late Miocene onset, Late Pliocene intensification, and Pliocene-Pleistocene events. In D.K. Rea, I.A. Basov, D.W. Scholl, J.F. Allan (eds.) Proc. Ocean Drill. Prog. Sci. Res. 145 (1995) 179-194.
    • M. Lee, L.N. Stout (eds.) Init. Rep. DSDP 56/57 (1980) doi:10.2973/dsdp.proc.5657.1980.
    • G. Lowe (ed.) Init. Rep. 186 (2000) doi:10.2973/odp.proc.ir.186.2000.
    • A.T. Miller (ed.) Init. Rep. 168 (1998) doi:10.2973/odp.proc.ir.168.1998.
    • L.F. Musich, O.E. Weser (eds.) Init. Rep. DSDP 18 (1973) doi:10.2973/dsdp.proc.18.1973.
    • L.L. Peters (ed.) Init. Rep. 191 (2001) doi:10.2973/odp.proc.ir.191.2001.
    • J. Shambach (ed.) Init. Rep. DSDP 55 (1980) doi:10.2973dsdp.proc.55.1980.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article