LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Brew, Ashley
Languages: English
Types: Doctoral thesis
Subjects: QD
The general objective of this investigation was to elucidate the effect that surface species such as OHads, Oads and the interfacial water layer have on the oxygen reduction reaction activity of active platinum and platinum alloy catalysts in perchloric acid electrolyte. To that end, these are the investigations that were carried out:\ud [Pt n{111}x{100}] and [Pt n{100}x111}] series of surfaces. These surfaces exhibit OHads/Oads formation at terrace and step sites in the potential range relevant to loss in ORR activity. The increase in activity observed at low step density was assigned to the disruption by steps of a long range ordered OHads terrace over-layer.\ud Hydrogen peroxide oxidation/reduction reaction activity of [Pt n{111}x{100}] and [Pt n{100}x{111}] series of surfaces. The results imply that if oxygen reduction proceeds via the series pathway the rate determining step lies in the later stages of the reaction, i.e after H2O2 formation.\ud CV and ORR of kinked surfaces based upon Pt{332}. These results indicate that low-coordinate {100} kink sites do not have unique ORR activity, i.e. their activity is identical to {100} linear step sites.\ud CV, XPS, STM and ORR of single crystal Pt{111}-M (where M=Ni, Co or Fe) alloy surfaces showed that the onset of electrochemical oxide formation shifts positive in the order Ni, Co, Fe. This shift correlated with increased activity towards the ORR which we ascribe to the greater availability of highly active metallic sites for oxygen reduction at ORR potentials.\ud (1x1) and disordered (1x2) surface atomic arrangements of Pt{110} were created and compared. For the first time, the voltammetry of the Pt{110}-(1x1) surface has been reported in aqueous perchloric acid and sodium hydroxide. The activity of the Pt{110}-(1x1) surface for oxygen reduction was found to be approximately 30 - 40 mV less active than the disordered (1x2) surface.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1.1.2 An Overview of Proton Exchange Membrane Fuel Cells (PEMFCs)
    • 1.2 Background and History of Catalysis, Electrochemistry and Electro-catalysis
    • 1.2.1 Electrode Kinetics and the Butler-Volmer Equation
    • 1.2.2 Adsorption
    • 1.2.3 The Electrical Double Layer
    • 1.3 The Surface Atomic Structure of Metals
    • 1.3.1 The Miller Index and Microfacet Notation Systems
    • 1.4 Electrochemical Techniques
    • 1.4.1 Mass Transport in Electrochemistry
    • 1.4.1.1 Diffusion in Chronoamperometry
    • 1.4.1.2 Diffusion in Cyclic Voltammetry (CV)
    • 1.4.1.3 Hydrodynamic Effects in Voltammetry
    • 1.4.1.3.1 The Rotating Disc Electrode (RDE)
    • 1.4.1.3.2 The Rotating Ring Disc Electrode (RRDE)
    • 1.4.2 CV of Well-Defined Platinum Single Crystal Electrodes
    • 1.4.2.1 CV of Platinum Nanoparticles
    • 1.5 Alloy Catalysts
    • 1.5.1 Surface Segregation in Pt Based Binary Alloys and its Effect on Oxygen
    • 1.5.2 Preparing Surface Alloys
    • 1.6 Ex-Situ Techniques
    • 1.6.1 X-ray Photoelectron Spectroscopy (XPS)
    • 1.6.2 Scanning Tunnelling Microscopy (STM)
    • 1.7 Objectives of the Current Investigation
    • 1.8 References
    • 3.3 ORR of a Series of Kinked Surfaces Based Upon Pt{332}
    • 3.3.1 Introduction
    • 3.3.2 CV and ORR Results
    • 3.3.3 Conclusions
    • 3.4 Cyclic Voltammetry and Oxygen Reduction Activity of the Pt{110}1x1 Surface
    • 3.4.1 Introduction
    • 3.4.2 Results
    • 3.4.2.1 Voltammetry
    • 3.4.2.2 Oxygen Reduction
    • 3.4.3 Conclusions
    • 3.5 References
    • 4.1 Introduction
    • 4.2 Conclusions
    • 4.3 Future Work
    • 4.4 References [1] J. Clavilier, R. Faure, G. Guinet, R. Durand, J. Electroanal. Chem., 107 (1980) 205-209. [2] N.M. Markovic, H.A. Gasteiger, P.N. Ross, J. Phys. Chem., 100 (1996) 6715-6721. [3] N.M. Markovic, H.A. Gasteiger, P.N. Ross, J. Phys. Chem., 99 (1995) 3411-3415. [4] N.M. Markovic, R.R. Adzic, B.D. Cahan, E.B. Yeager, J. Electroanal. Chem., 377 (1994) 249-259. [5] K. Itaya, Prog. Surf. Sci., 58 (1998) 121-247. [6] A. Kuzume, E. Herrero, J.M. Feliu, J. Electroanal. Chem., 599 (2007) 333-343. [7] M.D. Macia, J.M. Campina, E. Herrero, J.M. Feliu, J. Electroanal. Chem., 564 (2004) 141-150. [8] A.M. Gómez-Marín, J.M. Feliu, ChemSusChem, 6 (2013) 1091-1100. [9] M.J.T.C. van der Niet, A. den Dunnen, L.B.F. Juurlink, M.T.M. Koper, Angew. Chem., Int. Ed., 49
    • (2010) 6572-6575. [10] A.S. Bondarenko, I.E.L. Stephens, H.A. Hansen, F.J. Perez-Alonso, V. Tripkovic, T.P. Johansson,
    • J. Rossmeisl, J.K. Norskov, I. Chorkendorff, Langmuir, 27 (2011) 2058-2066. [11] K.L. Hsueh, E.R. Gonzalez, S. Srinivasan, Electrochim. Acta, 28 (1983) 691-697. [12] N.M. Markovic, H.A. Gasteiger, B.N. Grgur, P.N. Ross, J. Electroanal. Chem., 467 (1999) 157-
    • 163. [13] N.M. Marković, T.J. Schmidt, V. Stamenković, P.N. Ross, Fuel Cells, 1 (2001) 105-116. [14] Y.E. Seidel, A. Schneider, Z. Jusys, B. Wickman, B. Kasemo, R.J. Behm, Faraday Discuss., 140
    • (2009) 167-184. [15] A. Schneider, L. Colmenares, Y.E. Seidel, Z. Jusys, B. Wickman, B. Kasemo, R.J. Behm, Phys.
    • Chem. Chem. Phys., 10 (2008) 1931-1943. [16] H.S. Wroblowa, P. Yen Chi, G. Razumney, J. Electroanal. Chem. Interfacial Electrochem., 69
    • (1976) 195-201. [17] I. Katsounaros, W. Schneider, J. Meier, U. Benedikt, P. Biedermann, A. Auer, K.J. Mayrhofer,,
    • Phys. Chem. Chem. Phys., 14 (2012) 7384-7391. [18] J. Rossmeisl, Z.W. Qu, H. Zhu, G.J. Kroes, J.K. Nørskov, J. Electroanal. Chem., 607 (2007) 83-
    • 89. [19] V. Tripković, E. Skúlason, S. Siahrostami, J.K. Nørskov, J. Rossmeisl, Electrochim. Acta, 55
    • (2010) 7975-7981. [20] A.M. Gómez-Marín, K.J.P. Schouten, M.T.M. Koper, J.M. Feliu, Electrochem. Commun., 22
    • (2012) 153-156. [21] G. Roberto, C. Víctor, M.F. Juan, J.W. Michael, J. Phys. Chem. B, 104 (2000) 597-605. [22] A. Hitotsuyanagi, M. Nakamura, N. Hoshi, Electrochim. Acta, 82 (2012) 512-516. [23] A. Berná, V. Climent, J.M. Feliu, Electrochem. Commun., 9 (2007) 2789-2794. [24] M.T.M. Koper, J.J. Lukkien, J. Electroanal. Chem., 485 (2000) 161-165. [25] M.J.T.C. van der Niet, N. Garcia-Araez, J. Hernández, J.M. Feliu, M.T.M. Koper, Catal. Today,
    • 202 (2013) 105-113. [26] T. Schiros, L.Å. Näslund, K. Andersson, J. Gyllenpalm, G.S. Karlberg, M. Odelius, H. Ogasawara,
    • L.G.M. Pettersson, A. Nilsson, J. Phys. Chem. C, 111 (2007) 15003-15012. [27] G.S. Karlberg, G. Wahnström, Phys. Rev. Lett., 92 (2004) 136103. [28] G.S. Karlberg, G. Wahnström, J. Chem. Phys., 122 (2005) 194705. [29] K.J.P. Schouten, M.J.T.C. van der Niet, M.T.M. Koper, Phys. Chem. Chem. Phys., 12 (2010)
    • 15217-15224. [30] A. Rodes, M.A. Zamakhchari, K. El Achi, J. Clavilier, J. Electroanal. Chem. Interfacial
    • Electrochem., 305 (1991) 115-129. [31] K. Domke, E. Herrero, A. Rodes, J.M. Feliu, J. Electroanal. Chem., 552 (2003) 115-128. [32] N. Garcia-Araez, J.J. Lukkien, M.T.M. Koper, J.M. Feliu, J. Electroanal. Chem., 588 (2006) 1-14. [33] N. Garcia-Araez, V. Climent, J.M. Feliu, J. Electroanal. Chem., 649 (2010) 69-82. [34] B. Han, V. Viswanathan, H. Pitsch, J. Phys. Chem. C, 116 (2012) 6174-6183. [35] V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, N.M. Markovic,
    • Science, 315 (2007) 493-497. [36] G.A. Attard, A. Brew, J.-Y. Ye, D. Morgan, S.-G. Sun, ChemPhysChem, 15 (2014) 2044-2051. [37] J.X. Wang, N.M. Markovic, R.R. Adzic, J. Phys. Chem. B, 108 (2004) 4127-4133. [38] J. Perez, H.M. Villullas, E.R. Gonzalez, J. Electroanal. Chem., 435 (1997) 179-187. [39] E. Sitta, A.M. Gómez-Marín, A. Aldaz, J.M. Feliu, Electrochem. Commun., 33 (2013) 39-42. [40] A.M. Gomez-Marin, Rubin Rizo, J.M. Feliu, Beilstein J. Nanotechnol., 4 (2013) 956-967. [41] W. Yu, M. Porosoff, J. Chen,, Chem. Rev., 112 (2012) 5780-5817. [42] C. Wang, M. Chi, D. Li, D. Strmcnik, D. van der Vliet, G. Wang, V. Komanicky, K.-C. Chang, A.
    • Paulikas, D. Tripkovic, J. Pearson, K. More, N. Markovic, V. Stamenkovic, J. Am. Chem. Soc., 133
    • (2011) 14396-14403. [43] V. Stamenkovic, B. Mun, M. Arenz, K.J. Mayrhofer, C. Lucas, G. Wang, P. Ross, N. Markovic,
    • Nat. Mater., 6 (2007) 241-247. [44] D. van der Vleit, C. Wang, M. Debe, R. Atanasoki, N.M. Markovic, V.R. Stamenkovic,
    • Electrochim. Acta, 56 (2011) 8695-8699. [45] S.J. Hwang, S.J. Yoo, S. Jang, T.-H. Lim, S.A. Hong, S.-K. Kim, J. Phys. Chem. C, 115 (2011)
    • 2483-2488. [46] L. Liu, E. Pippel, Angew. Chem., Int. Ed., 50 (2011) 2729-2733. [47] I.E.L. Stephens, A.S. Bondarenko, F.J. Perez-Alonso, F. Calle-Vallejo, L. Bech, T.P. Johansson,
    • A.K. Jepsen, R. Frydendal, B.P. Knudsen, J. Rossmeisl, I. Chorkendorff, J. Am. Chem. Soc., 133 (2011)
    • 5485-5491. [48] M.B. Vukmirovic, J. Zhang, K. Sasaki, A.U. Nilekar, F. Uribe, M. Mavrikakis, R.R. Adzic,
    • Electrochim. Acta, 52 (2007) 2257-2263. [49] S.J. Hwang, S.-K. Kim, J.-G. Lee, S.-C. Lee, J.H. Jang, P. Kim, T.-H. Lim, Y.-E. Sung, S.J. Yoo,
    • J. Am. Chem. Soc., 134 (2012) 19508-19511. [50] L. Rameshwori, L. Jin, H. Ting, C. Yongsheng, X. Zhichuan, N.N. Peter, N.W. Bridgid, F. Bin,
    • M. Derrick, Y. Jun, K. Jonathan, P. Brian, Z. Chuan-Jian, J. Phys. Chem. C, 115 (2011) 1682-1694. [51] U.A. Paulus, A. Wokaun, G.G. Scherer, T.J. Schmidt, V. Stamenkovic, N.M. Markovic, P.N. Ross,
    • Electrochim. Acta, 47 (2002) 3787-3798. [52] S. Jiang-lan, C. Chen, C.M.L. James, Adv. Funct. Mater., 21 (2011) 3357-3362. [53] J. Greeley, I. Stephens, A. Bondarenko, T. Johansson, H. Hansen, T. Jaramillo, J. Rossmeisl, I.
    • Chorkendorff, J. Nørskov, Nat. Chem., 1 (2009) 552-556. [54] M. Shao, K. Shoemaker, A. Peles, K. Kaneko, L. Protsailo, J. Am. Chem. Soc., 132 (2010) 9253-
    • 9255. [55] R. Yang, J. Leisch, P. Strasser, M.F. Toney, Chem. Mater., 22 (2010) 4712-4720. [56] S. Guo, D. Li, H. Zhu, S. Zhang, N. Markovic, V. Stamenkovic, S. Sun, Angew. Chem., Int. Ed.,
    • 52 (2013) 3465-3468. [57] S. Woo, I. Kim, J.K. Lee, S. Bong, J. Lee, H. Kim, Electrochim. Acta, 56 (2011) 3036-3041. [58] H. Yang, Angew. Chem., Int. Ed., 50 (2011) 2674-2676. [59] J. Wu, L. Qi, H. You, A. Gross, J. Li, H. Yang, J. Am. Chem. Soc., 134 (2012) 11880-11883. [60] S.E. Huxter, G.A. Attard, Electrochem. Commun., 8 (2006) 1806-1810. [61] N. Bogolowski, S. Huxter, A-E-A. A. Abd-Elf-Latif, G.A. Attard, H. Baltruschat, J. Electroanal.
    • Chem., 646 (2010) 68-74. [62] A.M. El-Aziz, L.A. Kibler, Electrochem. Commun., 4 (2002) 866-870. [63] A. El-Aziz, R. Hoyer, L. Kibler, ChemPhysChem, 11 (2010) 2906-2911. [64] S. Ram, N. Danilovic, P.P. Lopes, D. Tripkovic, D. Strmcnik, V.R. Stamenkovic, N.M. Markovic,
    • J. Phys. Chem. C, 116 (2012) 22231-22237. [65] A.P. Grosvenor, M.C. Biesinger, R. St.C. Smart, N.S. McIntyre, Surf. Sci., 600 (2006) 1771-1779. [66] M.C. Biesinger, B.P. Payne, L.W.M. Lau, A. Gerson, R. St.C. Gerson, Surf. Interface Anal., 41
    • (2009) 324-332. [67] M. Wakisaka, S. Morishima, Y. Hyuga, H. Uchida, M. Watanabe, Electrochem. Commun., 18
    • (2012) 55-57. [68] H.W. Nesbitt, D. Legrand, G.M. Bancroft, Phys. Chem. Miner., 27 (2000) 357-366. [69] C.R. Brundle, T.J. Chuang, D.W. Rice, Surf. Sci., 60 (1976) 286-300. [70] M. Descostes, F. Mercier, N. Thromat, C. Beaucaire, M. Gautier-Soyer, Appl. Surf. Sci., 165
    • (2000) 288-302. [71] J.K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, J.
    • Phys. Chem. B, 108 (2004) 17886-17892. [72] Y. Gorlin, T.F. Jaramillo, J. Am. Chem. Soc., 132 (2010) 13612-13614. [73] L. Xiao, L. Zhuang, Y. Liu, J. Lu, H.D. Abruna, J. Am. Chem. Soc., 131 (2009) 602-608. [74] S. Guerin, B. Hayden, D. Pletcher, M. Rendall, J.-P. Suchsland, J. Comb. Chem., 8 (2006) 679-
    • 686. [75] C.M. Sánchez-Sánchez, J. Solla-Gullón, F.J. Vidal-Iglesias, A. Aldaz, V. Montiel, E. Herrero, J.
    • Am. Chem. Soc., 132 (2010) 5622-5624. [76] A. Hitotsuyanagi, S. Kondo, M. Nakamura, N. Hoshi, J. Electroanal. Chem., 657 (2011) 123-127. [77] Y. Takesue, M. Nakamura, N. Hoshi, Phys. Chem. Chem. Phys., 16 (2014) 13774-13779. [78] S. Kondo, M. Nakamura, N. Maki, N. Hoshi, J. Phys. Chem. C, 113 (2009) 12625-12628. [79] V. Stamenkovic, N.M. Markovic, P.N. Ross, J. Electroanal. Chem., 500 (2001) 44-51. [80] R. Jinnouchi, K. Kodama, Y. Morimoto, J. Electroanal. Chem., 716 (2014) 31-44. [81] A. Bjö rling, E. Herrero, J.M. Feliu, J. Phys. Chem. C, 115 (2011) 15509-15515. [82] N. Tian, Z.-Y. Zhou, S.-G. Sun, J. Phys. Chem. C, 112 (2008) 19801-19817. [83] M.A. Van Hove, R.J. Koestner, P.C. Stair, J.P. Bibérian, L.L. Kesmodel, I. BartoŠ, G.A. Somorjai,
    • Surf. Sci., 103 (1981) 189-217. [84] M.A. Van Hove, R.J. Koestner, P.C. Stair, J.P. Bibérian, L.L. Kesmodel, I. Bartoš, G.A. Somorjai,
    • Surf. Sci., 103 (1981) 218-238. [85] A.R. Sandy, S.G.J. Mochrie, D.M. Zehner, G. Grübel, K.G. Huang, D. Gibbs, Phys. Rev. Lett., 68
    • (1992) 2192-2195. [86] G. Grübel, K.G. Huang, D. Gibbs, D.M. Zehner, A.R. Sandy, S.G.J. Mochrie, Phys. Rev. B, 48
    • (1993) 18119-18139. [87] M. Bott, M. Hohage, T. Michely, G. Comsa, Phys. Rev. Lett., 70 (1993) 1489-1492. [88] M. Hohage, T. Michely, G. Comsa, Surf. Sci., 337 (1995) 249-267. [89] A. Al-Akl, G.A. Attard, R. Price, B. Timothy, J. Electroanal. Chem., 467 (1999) 60-66. [90] M.S. Zei, N. Batina, D.M. Kolb, Surf. Sci., 306 (1994) L519-L528. [91] F.G. Will, J. Electrochem. Soc., 112 (1965) 451-455. [92] J. Clavilier, J. Electroanal. Chem., 107 (1980) 211-216. [93] L.A. Kibler, A. Cuesta, M. Kleinert, D.M. Kolb, J. Electroanal. Chem., 484 (2000) 73-82. [94] A. Al-Akl, G. Attard, R. Price, B. Timothy, J. Chem. Soc., Faraday Trans., 91 (1995) 3585-3591. [95] N.M. Marković, B.N. Grgur, C.A. Lucas, P.N. Ross, Surf. Sci., 384 (1997) L805-L814. [96] R. Michaelis, D.M. Kolb, J. Electroanal. Chem., 328 (1992) 341-348. [97] P. Hofmann, S.R. Bare, D.A. King, Surf. Sci., 117 (1982) 245-256. [98] J. Souza-Garcia, V. Climent, J.M. Feliu, Electrochem. Commun., 11 (2009) 1515-1518. [99] J. Souza-Garcia, C.A. Angelucci, V. Climent, J.M. Feliu, Electrochem. Commun., 34 (2013) 291-
    • 294. [100] A.M. Bittner, J. Wintterlin, G. Ertl, J. Electroanal. Chem., 388 (1995) 225-231. [101] P. Rodríguez, G. García, E. Herrero, J.M. Feliu, M.T.M. Koper, Electrocatalysis, 2 (2011) 242-
    • 253. [102] H. Tanaka, Y. Nagahara, S. Sugawara, K. Shinohara, M. Nakamura, N. Hoshi, Electrocatalysis,
    • 5 (2014) 354-360. [103] V. Climent, G.A. Attard, J.M. Feliu, J. Electroanal. Chem., 532 (2002) 67-74. [104] R. Rizo, E. Sitta, E. Herrero, V. Climent, J.M. Feliu, Electrochim. Acta, 162 (2015) 138-145. [105] N. Furuya, M. Shibata, J. Electroanal. Chem., 467 (1999) 85-91. [106] N.M. Markovic, B.N. Grgur, P.N. Ross, J. Phys. Chem. B, 101 (1997) 5405-5413. [1] M.D. Macia, J.M. Campina, E. Herrero, J.M. Feliu, J. Electroanal. Chem., 564 (2004) 141-150. [2] B. Han, V. Viswanathan, H. Pitsch, J. Phys. Chem. C, 116 (2012) 6174-6183. [3] M.T.M. Koper, J.J. Lukkien, J. Electroanal. Chem., 485 (2000) 161-165. [4] T. Schiros, L.Å. Näslund, K. Andersson, J. Gyllenpalm, G.S. Karlberg, M. Odelius, H. Ogasawara,
    • L.G.M. Pettersson, A. Nilsson, J. Phys. Chem. C, 111 (2007) 15003-15012. [5] A.M. Gómez-Marín, J.M. Feliu, Catal. Today, 244 (2015) 172-176. [6] M.J.T.C. van der Niet, N. Garcia-Araez, J. Hernández, J.M. Feliu, M.T.M. Koper, Catal. Today, 202
    • (2013) 105-113. [7] M.J.T.C. van der Niet, A. den Dunnen, L.B.F. Juurlink, M.T.M. Koper, Angew. Chem., Int. Ed., 49
    • (2010) 6572-6575. [8] I. Katsounaros, W. Schneider, J. Meier, U. Benedikt, P. Biedermann, A. Auer, K.J. Mayrhofer, Phys.
    • Chem. Chem. Phys., 14 (2012) 7384-7391. [9] V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, N.M. Markovic, Sci.
    • 315 (2007) 493-497. [10] A.M. Gomez-Marin, R. Rizo, J.M. Feliu, Catal. Sci. Technol., 4 (2014) 1685-1698. [11] C.P. Andrieux, P. Hapiot, J.M. Saveant, J. Am. Chem. Soc., 109 (1987) 3768-3775. [12] M.-h. Shao, P. Liu, R.R. Adzic, J. Am. Chem. Soc., 128 (2006) 7408-7409. [13] X. Li, A.A. Gewirth, J. Am. Chem. Soc., 127 (2005) 5252-5260. [14] J.-M. Noël, A. Latus, C. Lagrost, E. Volanschi, P. Hapiot, J. Am. Chem. Soc., 134 (2012) 2835-
    • 2841. [15] H.J. Forman, I. Fridovich, Science, 175 (1972) 339-339. [16] D.L. Maricle, W.G. Hodgson, Anal. Chem., 37 (1965) 1562-1565.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok