LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Freeman, Elliot D.; Macaluso, Emiliano; Rees, Geraint; Driver, Jon (2014)
Publisher: Frontiers Media S.A.
Journal: Frontiers in Integrative Neuroscience
Languages: English
Types: Article
Subjects: attentional modulation, coherent motion, functional imaging, object-based attention, perceptual grouping, visual cortex, RC0321, object-based attention, coherent motion, visual cortex, Neuroscience, Original Research Article, perceptual grouping, attentional modulation, functional imaging
Theories of object-based attention often make two assumptions: that attentional resources are facilitatory, and that they spread automatically within grouped objects. Consistent with this, ignored visual stimuli can be easier to process, or more distracting, when perceptually grouped with an attended target stimulus. But in past studies, the ignored stimuli often shared potentially relevant features or locations with the target. In this fMRI study, we measured the effects of attention and grouping on Blood Oxygenation Level Dependent (BOLD) responses in the human brain to entirely task-irrelevant events. Two checkerboards were displayed each in opposite hemifields, while participants responded to check-size changes in one pre-cued hemifield, which varied between blocks. Grouping (or segmentation) between hemifields was manipulated between blocks, using common (vs. distinct) motion cues. Task-irrelevant transient events were introduced by randomly changing the color of either checkerboard, attended or ignored, at unpredictable intervals. The above assumptions predict heightened BOLD signals for irrelevant events in attended vs. ignored hemifields for ungrouped contexts, but less such attentional modulation under grouping, due to automatic spreading of facilitation across hemifields. We found the opposite pattern, in primary visual cortex. For ungrouped stimuli, BOLD signals associated with task-irrelevant changes were lower, not higher, in the attended vs. ignored hemifield; furthermore, attentional modulation was not reduced but actually inverted under grouping, with higher signals for events in the attended vs. ignored hemifield. These results challenge two popular assumptions underlying object-based attention. We consider a broader biased-competition framework: task-irrelevant stimuli are suppressed according to how strongly they compete with task-relevant stimuli, with intensified competition when the irrelevant features or locations comprise the same object.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Altmann, C. F., Bülthoff, H. H., and Kourtzi, Z. (2003). Perceptual organization of local elements into global shapes in the human visual cortex. Curr. Biol. 13, 342-349. doi: 10.1016/S0960-9822(03)00052-6
    • Avrahami, J. (1999). Objects of attention, objects of perception. Percept. Psychophys. 61, 1604-1612. doi: 10.3758/BF03213121
    • Baylis, G. C., and Driver, J. (1993). Visual attention and objects: evidence for hierarchical coding of location. J. Exp. Psychol. Hum. Percept. Perform. 19, 451. doi: 10.1037/0096-1523.19.3.451
    • Baylis, G. C., and Driver, J. (1992). Visual parsing and response competition: the effect of grouping factors. Percept. Psychophys. 51, 145-162. doi: 10.3758/BF03212239
    • Chen, Z. (2012). Object-based attention: a tutorial review. Atten. Percept. Psychophys. 74, 784-802. doi: 10.3758/s13414-012-0322-z
    • Chen, Z., and Cave, K. R. (2013). Perceptual load vs. dilution: the roles of attentional focus, stimulus category, and target predictability. Front. Psychol. 4:327. doi: 10.3389/fpsyg.2013.00327
    • Chen, Z., and Cave, K. R. (2006). Reinstating object-based attention under positional certainty: the importance of subjective parsing. Percept. Psychophys. 68, 992-1003. doi: 10.3758/BF03193360
    • Chun, M. M., and Marois, R. (2002). The dark side of visual attention. Curr. Opin. Neurobiol. 12, 184-189. doi: 10.1016/S0959-4388(02)00309-4
    • Ciaramitaro, V. M., Mitchell, J. F., Stoner, G. R., Reynolds, J. H., and Boynton, G. M. (2011). Object-based attention to one of two superimposed surfaces alters responses in human early visual cortex. J. Neurophysiol. 105, 1258-1265. doi: 10.1152/jn.00680.2010
    • Davis, G., Driver, J., Pavani, F., and Shepherd, A. (2000). Reappraising the apparent costs of attending to two separate visual objects. Vision Res. 40, 1323-1332. doi: 10.1016/S0042-6989(99)00189-3
    • Davis, G., and Holmes, A. (2005). Reversal of object-based benefits in visual attention. Vis. Cogn. 12, 817-846. doi: 10.1080/13506280444000247
    • De Meyer, K., and Spratling, M. W. (2009). A model of non-linear interactions between cortical top-down and horizontal connections explains the attentional gating of collinear facilitation. Vision Res. 49, 553-568. doi: 10.1016/j.visres.2008.12.017
    • Desimone, R., and Duncan, J. (1995). Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193-222. doi: 10.1146/annurev.ne.18.030195.001205
    • Driver, J., and Baylis, G. C. (1989). Movement and visual attention: the spotlight metaphor breaks down. J. Exp. Psychol. Hum. Percept. Perform. 15, 448-456. doi: 10.1037/0096-1523.15.3.448
    • Driver, J., Davis, G., Russell, C., Turatto, M., and Freeman, E. (2001). Segmentation, attention and phenomenal visual objects. Cognition 80, 61-95. doi: 10.1016/S0010-0277(00)00151-7
    • Duncan, J. (1984). Selective attention and the organization of visual information. J. Exp. Psychol. Gen. 113, 501. doi: 10.1037/0096-3445.113. 4.501
    • Duncan, J., and Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychol. Rev. 96, 433. doi: 10.1037/0033-295X.96.3.433
    • Egly, R., Driver, J., and Rafal, R. D. (1994). Shifting visual attention between objects and locations: evidence from normal and parietal lesion subjects. J. Exp. Psychol. Gen. 123, 161. doi: 10.1037/0096-3445.123.2.161
    • Eriksen, B. A., and Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys. 16, 143-149. doi: 10.3758/BF03203267
    • Ernst, Z. R., Boynton, G. M., and Jazayeri, M. (2013). The spread of attention across features of a surface. J. Neurophysiol. 110, 2426-2439. doi: 10.1152/jn.00828.2012
    • Festman, Y., and Braun, J. (2012). Feature-based attention spreads preferentially in an object-specific manner. Vision Res. 54, 31-38. doi: 10.1016/j.visres.2011.12.003
    • Freeman, E., and Driver, J. (2008). Voluntary control of long-range motion integration via selective attention to context. J. Vis. 8, 1-22. doi: 10.1167/ 8.11.18.
    • Freeman, E., Sagi, D., and Driver, J. (2001). Lateral interactions between targets and flankers in low-level vision depend on attention to the flankers. Nat. Neurosci. 4, 1032-1036. doi: 10.1038/nn728
    • Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J.-P., Frith, C. D., and Frackowiak, R. S. J. (1994). Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2, 189-210. doi: 10.1002/hbm.460020402
    • Friston, K. J., Rotshtein, P., Geng, J. J., Sterzer, P., and Henson, R. N. (2006). A critique of functional localisers. Neuroimage 30, 1077-1087. doi: 10.1016/j.neuroimage.2005.08.012
    • Fuentes, L. J., Humphreys, G. W., Agis, I. F., Carmona, E., and Catena, A. (1998). Object-based perceptual grouping affects negative priming. J. Exp. Psychol. Hum. Percept. Perform. 24, 664. doi: 10.1037/0096-1523. 24.2.664
    • Harms, L., and Bundesen, C. (1983). Color segregation and selective attention in a nonsearch task. Percept. Psychophys. 33, 11-19. doi: 10.3758/BF0 3205861
    • Hasnain, M. K., Fox, P. T., and Woldorff, M. G. (1998). Intersubject variability of functional areas in the human visual cortex. Hum. Brain Mapp. 6, 301-315. doi: 10.1002/(SICI)1097-0193(1998)6:4<301::AID-HBM8>3.0. CO;2-7
    • He, X., Fan, S., Zhou, K., and Chen, L. (2004). Cue validity and objectbased attention. J. Cogn. Neurosci. 16, 1085-1097. doi: 10.1162/08989290415 02689
    • Hollingworth, A., Maxcey-Richard, A. M., and Vecera, S. P. (2012). The spatial distribution of attention within and across objects. J. Exp. Psychol. Hum. Percept. Perform. 38, 135-151. doi: 10.1037/a0024463
    • Jarmasz, J., Herdman, C. M., and Johannsdottir, K. R. (2005). Object-based attention and cognitive tunneling. J. Exp. Psychol. Appl. 11, 3-12. doi: 10.1037/1076- 898X.11.1.3
    • Kahneman, D., and Henik, A. (1981). Perceptual organization and attention. Percept. Org. 1, 181-211.
    • Kastner, S., De Weerd, P., Desimone, R., and Ungerleider, L. G. (1998). Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science 282, 108-111. doi: 10.1126/science.282.5386.108
    • Khoe, W., Freeman, E., Woldorff, M. G., and Mangun, G. R. (2006). Interactions between attention and perceptual grouping in human visual cortex. Brain Res. 1078, 101-111. doi: 10.1016/j.brainres.2005.12.083
    • Kim, M. -S., and Cave, K. R. (2001). Perceptual grouping via spatial selection in a focused-attention task. Vision Res. 41, 611-624. doi: 10.1016/S0042- 6989(00)00285-6
    • Kim, Y. -J., and Verghese, P. (2012). The selectivity of task-dependent attention varies with surrounding context. J. Neurosci. 32, 12180-12191. doi: 10.1523/JNEUROSCI.5992-11.2012
    • Kramer, A. F., and Jacobson, A. (1991). Perceptual organization and focused attention: the role of objects and proximity in visual processing. Percept. Psychophys. 50, 267-284. doi: 10.3758/BF03206750
    • Kramer, A. A. F., Weber, T. T. A., and Watson, S. S. E. (1997). Object-based attentional selection-Grouped arrays or spatially invariant representations?: comment on Vecera and Farah (1994). J. Exp. Psychol. Gen. 126, 3-13. doi: 10.1037/0096-3445.126.1.3
    • Logan, G. D. (1996). The CODE theory of visual attention: an integration of spacebased and object-based attention. Psychol. Rev. 103, 603. doi: 10.1037/0033- 295X.103.4.603
    • Martinez, A., Ramanathan, D. S., Foxe, J. J., Javitt, D. C., and Hillyard, S. A. (2007). The role of spatial attention in the selection of real and illusory objects. J. Neurosci. 27, 7963-7973. doi: 10.1523/JNEUROSCI.0031- 07.2007
    • Martinez-Trujillo, J. C., and Treue, S. (2004). Feature-based attention increases the selectivity of population responses in primate visual cortex. Curr. Biol. 14, 744-751. doi: 10.1016/j.cub.2004.04.028
    • Martinez, A., Teder-Sälejärvi, W., Vazquez, M., Molholm, S., Foxe,. J., Javitt,. C., et al. (2006). Objects are highlighted by spatial attention. J. Cogn. Neurosci. 18, 298-310. doi: 10.1162/jocn.2006.18.2.298
    • Melcher, D., Papathomas, T. V., and Vidnyánszky, Z. (2005). Implicit attentional selection of bound visual features. Neuron 46, 723-729. doi: 10.1016/j.neuron.2005.04.023
    • Melcher, D., and Vidnyánszky, Z. (2006). Subthreshold features of visual objects: unseen but not unbound. Vision Res. 46, 1863-1867. doi: 10.1016/j.visres.2005.11.021
    • Mitchell, J. F., Stoner, G. R., and Reynolds, J. H. (2004). Object-based attention determines dominance in binocular rivalry. Nature 429, 410-413. doi: 10.1038/nature02584
    • Murray, S. O., Kersten, D., Olshausen, B. A., Schrater, P., and Woods, D. L. (2002). Shape perception reduces activity in human primary visual cortex. Proc. Natl. Acad. Sci. U.S.A. 99, 15164-15169. doi: 10.1073/pnas.1925 79399
    • Müller, N. G., and Kleinschmidt, A. (2003). Dynamic interaction of object- and space-based attention in retinotopic visual areas. J. Neurosci. 23, 9812-9816.
    • Neisser, U., and Becklen, R. (1975). Selective looking: attending to visually specified events. Cogn. Psychol. 7, 480-494. doi: 10.1016/0010-0285(75) 90019-5
    • O'Craven, K. M., Downing, P. E., and Kanwisher, N. (1999). fMRI evidence for objects as the units of attentional selection. Nature 401, 584-587. doi: 10.1038/44134
    • Palmer, S., and Rock, I. (1994). Rethinking perceptual organization: the role of uniform connectedness. Psychon. Bull. Rev. 1, 29-55. doi: 10.3758/BF03200760
    • Posner, M. I., Snyder, C. R., and Davidson, B. J. (1980). Attention and the detection of signals. J. Exp. Psychol. Gen. 109, 160. doi: 10.1037/0096-3445. 109.2.160
    • Richard, A. M., Lee, H., and Vecera, S. P. (2008). Attentional spreading in objectbased attention. J. Exp. Psychol. Hum. Percept. Perform. 34, 842-853. doi: 10.1037/0096-1523.34.4.842
    • Roelfsema, P. R. (2006). Cortical algorithms for perceptual grouping. Annu. Rev. Neurosci. 29, 203-227. doi: 10.1146/annurev.neuro.29.051605.112939
    • Saenz, M., Buracas, G. T., and Boynton, G. M. (2002). Global effects of featurebased attention in human visual cortex. Nat. Neurosci. 5, 631-632. doi: 10.1038/nn876
    • Schoenfeld, M. A., Tempelmann, C., Martinez, A., Hopf, J.-M., Sattler, C., Heinze, H., et al. (2003). Dynamics of feature binding during object-selective attention. Proc. Natl. Acad. Sci. U.S.A. 100, 11806-11811. doi: 10.1073/pnas.19328 20100
    • Scholl, B. J., Pylyshyn, Z. W., and Feldman, J. (2001). What is a visual object? evidence from target merging in multiple object tracking. Cognition 80, 159-177. doi: 10.1016/S0010-0277(00)00157-8 ¯
    • Shomstein, S. (2012). Object-based attention: strategy versus automaticity. Wiley Interdiscip. Rev. Cogn. Sci. 3, 163-169. doi: 10.1002/wcs.1162
    • Shomstein, S., and Yantis, S. (2002). Object-based attention: sensory modulation or priority setting? Percept. Psychophys. 64, 41-51. doi: 10.3758/BF031 94556
    • Teo, P. C., Sapiro, G., and Wandell, B. A. (1997). Creating connected representations of cortical gray matter for functional MRI visualization. IEEE Trans. Med. Imaging 16, 852-863. doi: 10.1109/42.650881
    • Tipper, S. P., Driver, J., and Weaver, B. (1991). Short report: object-centred inhibition of return of visual attention. Q. J. Exp. Psychol. 43, 289-298. doi: 10.1080/14640749108400971
    • Tootell, R. B., Reppas, J. B., Kwong, K. K., Malach, R., Born, R. T., Brady, T. J., et al. (1995). Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J. Neurosci. 15, 3215.
    • Valdes-Sosa, M., Bobes, M. A., Rodriguez, V., and Pinilla, T. (1998). Switching attention without shifting the spotlight object-based attentional modulation of brain potentials. J. Cogn. Neurosci. 10, 137-151. doi: 10.1162/0898929985 63743
    • Vecera, S. P., and Behrmann, M. (2001). Attention and unit formation: a biased competition account of object-based attention. Adv. Psychol. 130, 145-180. doi: 10.1016/S0166-4115(01)80026-1
    • Vecera, S. P., and Farah, M. J. (1994). Does visual attention select objects or locations? J. Exp. Psychol. Gen. 123, 146. doi: 10.1037/0096-3445.123.2.146
    • Wandell, B. A., Chial, S., and Backus, B. T. (2000). Visualization and measurement of the cortical surface. J. Cogn. Neurosci. 12, 739-752. doi: 10.1162/089892900562561
    • Watson, J. D. G., Myers, R., Frackowiak, R. S. J., Hajnal, J. V., Woods, R. P., Mazziotta, J. C., et al. (1993). Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb. Cortex 3, 79-94. doi: 10.1093/cercor/ 3.2.79
    • Watson, S. E., and Kramer, A. F. (1999). Object-based visual selective attention and perceptual organization. Percept. Psychophys. 61, 31-49. doi: 10.3758/BF03211947
    • Weber, T. A., Kramer, A. F., and Miller, G. A. (1997). Selective processing of superimposed objects: an electrophysiological analysis of object-based attentional selection. Biol. Psychol. 45, 159-182. doi: 10.1016/S0301-0511(96) 05227-1
    • Wegener, D., Ehn, F., Aurich, M. K., Galashan, F., and Kreiter, A. K. (2008). Featurebased attention and the suppression of non-relevant object features. Vision Res. 48, 2696-2707. doi: 10.1016/j.visres.2008.08.021
    • Yeari, M., and Goldsmith, M. (2010). Is object-based attention mandatory? Strategic control over mode of attention. J. Exp. Psychol. Hum. Percept. Perform. 36, 565-579. doi: 10.1037/a0016897
    • Zhao, J., Kong, F., and Wang, Y. (2013). Attentional spreading in objectbased attention: the roles of target-object integration and target presentation time. Atten. Percept. Psychophys. 75, 876-887. doi: 10.3758/s13414- 013-0445-x
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

  • WT

Cite this article