LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wild, Vivienne; Almaini, Omar; Dunlop, Jim; Simpson, Chris; Rowlands, Kate; Bowler, Rebecca; Maltby, David; McLure, Ross (2016)
Publisher: Oxford University Press
Languages: English
Types: Article
Subjects: QC Physics, high-redshift [Galaxies], luminosity function, mass function [Galaxies], Astrophysics - Astrophysics of Galaxies, stellar content [Galaxies], formation [Galaxies], QB, QC, evolution [Galaxies], QB Astronomy, NDAS

Classified by OpenAIRE into

arxiv: Astrophysics::Cosmology and Extragalactic Astrophysics, Astrophysics::Galaxy Astrophysics, Astrophysics::Solar and Stellar Astrophysics, Astrophysics::Earth and Planetary Astrophysics
V. W. and K. R. acknowledge support of the European Research Council via the award of a starting grant (SEDMorph; P.I. V. Wild). We present the evolution in the number density and stellar mass functions of photometrically selected post-starburst galaxies in the UKIDSS Deep Survey (UDS), with redshifts of 0.5 < z < 2 and stellar masses log (M/M⊙)>10. We find that this transitionary species of galaxy is rare at all redshifts, contributing ∼5% of the total population at z ∼ 2, to <1% by z ∼ 0.5. By comparing the mass functions of quiescent galaxies to post-starburst galaxies at three cosmic epochs, we show that rapid quenching of star formation can account for 100% of quiescent galaxy formation, if the post-starburst spectral features are visible for ∼250 Myr. The flattening of the low mass end of the quiescent galaxy stellar mass function seen at z ∼ 1 can be entirely explained by the addition of rapidly quenched galaxies. Only if a significant fraction of post-starburst galaxies have features that are visible for longer than 250 Myr, or they acquire new gas and return to the star-forming sequence, can there be significant growth of the red sequence from a slower quenching route. The shape of the mass function of these transitory post-starburst galaxies resembles that of quiescent galaxies at z ∼ 2, with a preferred stellar mass of log (M/M⊙)∼10.6, but evolves steadily to resemble that of star-forming galaxies at z < 1. This leads us to propose a dual origin for post-starburst galaxies: (1) at z ≳ 2 they are exclusively massive galaxies that have formed the bulk of their stars during a rapid assembly period, followed by complete quenching of further star formation; (2) at z ≲ 1 they are caused by the rapid quenching of gas-rich star-forming galaxies, independent of stellar mass, possibly due to environment and/or gas-rich major mergers. Postprint Peer reviewed
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Almaini O. et al., 2016, MNRAS, in press
    • Athanassoula E., Rodionov S. A., Peschken N., Lambert J. C., 2016, ApJ, 821, 90
    • Barro G. et al., 2014, ApJ, 791, 52
    • Bell E. F. et al., 2004, ApJ, 608, 752
    • Bell E. F. et al., 2012, ApJ, 753, 167
    • Best P. N., Kaiser C. R., Heckman T. M., Kauffmann G., 2006, MNRAS, 368, L67
    • Blake C. et al., 2004, MNRAS, 355, 713
    • Bower R. G., Benson A. J., Malbon R., Helly J. C., Frenk C. S., Baugh C. M., Cole S., Lacey C. G., 2006, MNRAS, 370, 645
    • Brennan R. et al., 2015, MNRAS, 451, 2933
    • Bruce V. A. et al., 2012, MNRAS, 427, 1666
    • Bruce V. A. et al., 2014, MNRAS, 444, 1001
    • Bruzual G., Charlot S., 2003, MNRAS, 344, 1000 (BC03)
    • Buitrago F., Trujillo I., Conselice C. J., Ha¨ußler B., 2013, MNRAS, 428, 1460
    • Caputi K. I., Cirasuolo M., Dunlop J. S., McLure R. J., Farrah D., Almaini O., 2011, MNRAS, 413, 162
    • Casali M. et al., 2007, A&A, 467, 777
    • Ceverino D., Dekel A., Tweed D., Primack J., 2015, MNRAS, 447, 3291
    • Chabrier G., 2003, PASP, 115, 763
    • Choi J., Conroy C., Moustakas J., Graves G. J., Holden B. P., Brodwin M., Brown M. J. I., van Dokkum P. G., 2014, ApJ, 792, 95
    • Connolly A. J., Szalay A. S., 1999, AJ, 117, 2052
    • Conroy C., Gunn J. E., White M., 2009, ApJ, 699, 486
    • Cox T. J., Dutta S. N., Di Matteo T., Hernquist L., Hopkins P. F., Robertson B., Springel V., 2006, ApJ, 650, 791
    • Croton D. J. et al., 2006, MNRAS, 365, 11
    • da Cunha E., Charlot S., Elbaz D., 2008, MNRAS, 388, 1595
    • Daddi E. et al., 2005, ApJ, 626, 680
    • Damjanov I. et al., 2009, ApJ, 695, 101
    • Dekel A., Birnboim Y., 2006, MNRAS, 368, 2
    • Dekel A., Burkert A., 2014, MNRAS, 438, 1870
    • Di Matteo T., Springel V., Hernquist L., 2005, Nature, 433, 604
    • Drory N. et al., 2009, ApJ, 707, 1595
    • Dunlop J. S., 2001, DEEP MILLIMETER SURVEYS: Implications for Galaxy Formation and Evolution. World Scientific Press, Singapore, p. 11
    • Faber S. M. et al, 2007, ApJ, 665, 265
    • Finoguenov A. et al., 2010, MNRAS, 403, 2063
    • Fontanot F., Lucia G. D., Monaco P., Somerville R. S., Santini P., 2009, MNRAS, 397, 1776
    • French K. D., Yang Y., Zabludoff A., Narayanan D., Shirley Y., Walter F., Smith J.-D., Tremonti C. A., 2015, ApJ, 801, 1
    • Furusawa H. et al., 2008, ApJS, 176, 1
    • Gabor J. M., Dave´ R., Finlator K., Oppenheimer B. D., 2010, MNRAS, 407, 749
    • Gallazzi A., Charlot S., Brinchmann J., White S. D. M., Tremonti C. A., 2005, MNRAS, 362, 41
    • Goto T., 2005, MNRAS, 357, 937
    • Governato F. et al., 2009, MNRAS, 398, 312
    • Hambly N. C. et al., 2008, MNRAS, 384, 637
    • Hartley W. G. et al., 2013, MNRAS, 431, 3045
    • Hewett P. C., Warren S. J., Leggett S. K., Hodgkin S. T., 2006, MNRAS, 367, 454
    • Hodgkin S. T., Irwin M. J., Hewett P. C., Warren S. J., 2009, MNRAS, 394, 675
    • Hopkins P. F., Cox T. J., Younger J. D., Hernquist L., 2009a, ApJ, 691, 1168
    • Hopkins P. F., Hernquist L., Cox T. J., Keres D., Wuyts S., 2009b, ApJ, 691, 1424
    • Ilbert O. et al., 2013, A&A, 556, 55
    • Kauffmann G. et al., 2003, MNRAS, 341, 33
    • Lang P. et al., 2014, ApJ, 788, 11
    • Lawrence A. et al., 2007, MNRAS, 379, 1599
    • Madau P., Dickinson M., 2014, Ann. Rev. Astron. Astrophys., 52, 415
    • Maltby D. T. et al., 2016, MNRAS, 459L, 114
    • Maraston C., Daddi E., Renzini A., Cimatti A., Dickinson M., Papovich C., Pasquali A., Pirzkal N., 2006, ApJ, 652, 85
    • Moster B. P., Somerville R. S., Newman J. A., Rix H.-W., 2011, ApJ, 731, 113
    • Moustakas J. et al., 2013, ApJ, 767, 50
    • Moutard T. et al., 2016, A&A, 590, A103
    • Muratov A. L., Keresˇ D., Faucher-Gigue`re C.-A., Hopkins P. F., Quataert E., Murray N., 2015, MNRAS, 454, 2691
    • Muzzin A. et al., 2013, ApJ, 777, 18
    • Naab T., Jesseit R., Burkert A., 2006, MNRAS, 372, 839
    • Naab T. et al., 2014, MNRAS, 444, 3357
    • Nelson E. et al., 2014, Nature, 513, 394
    • Oke J. B., Gunn J. E., 1983, ApJ, 266, 713
    • Ownsworth J. R., Conselice C. J., Mundy C. J., Mortlock A., Hartley W. G., Duncan K., Almaini O., 2016, MNRAS, 461, 1112
    • Pattarakijwanich P., Strauss M. A., Ho S., Ross N. P., 2014, ApJ, preprint (arXiv:1410.7394)
    • Pawlik M. M., Wild V., Walcher C. J., Johansson P. H., Villforth C., Rowlands K., Mendez-Abreu J., Hewlett T., 2016, MNRAS, 456, 3032
    • Peng Y.-J. et al., 2010, ApJ, 721, 193
    • Pozzetti L. et al., 2010, A&A, 523, A13
    • Quintero A. D. et al., 2004, ApJ, 602, 190
    • Rowlands K., Wild V., Nesvadba N., Sibthorpe B., Mortier A., Lehnert M., da Cunha E., 2015, MNRAS, 448, 258
    • Schechter P., 1976, ApJ, 203, 297
    • Schmidt M., 1968, ApJ, 151, 393
    • Silk J., Rees M. J., 1998, A&A, 331, L1
    • Simpson C. et al., 2012, MNRAS, 421, 3060
    • Simpson C., Westoby P., Arumugam V., Ivison R., Hartley W., Almaini O., 2013, MNRAS, 433, 2647
    • Simpson J. M. et al., 2014, ApJ, 788, 125
    • Smail I. et al., 2014, ApJ, 782, 19
    • Snyder G. F., Cox T. J., Hayward C. C., Hernquist L., Jonsson P., 2011, ApJ, 741, 77
    • Straatman C. M. S. et al., 2014, ApJ, 783, L14
    • Swinbank A. M. et al., 2014, MNRAS, 438, 1267
    • Tomczak A. R. et al., 2014, ApJ, 783, 85
    • Toomre A., Toomre J., 1972, ApJ, 178, 623
    • van Breukelen C. et al., 2006, MNRAS, 373, L26
    • van der Wel A. et al., 2014, ApJ, 788, 28
    • van Dokkum P. G. et al., 2015, ApJ, 813, 23
    • Vergani D. et al., 2010, A&A, 509, A42
    • Whitaker K. E., Kriek M., van Dokkum P. G., Bezanson R., Brammer G., Franx M., Labbe´ I., 2012, ApJ, 745, 179
    • Wild V., Kauffmann G., Heckman T., Charlot S., Lemson G., Brinchmann J., Reichard T., Pasquali A., 2007, MNRAS, 381, 543
    • Wild V., Walcher C. J., Johansson P. H., Tresse L., Charlot S., Pollo A., Fe`vre O. L., de Ravel L., 2009, MNRAS, 395, 144 (WWJ09)
    • Wild V. et al., 2014, MNRAS, 440, 1880 (WA14)
    • Wuyts S., Cox T. J., Hayward C. C., Franx M., Hernquist L., Hopkins P. F., Jonsson P., van Dokkum P. G., 2010, ApJ, 722, 1666
    • Yan R., Newman J. A., Faber S. M., Konidaris N., Koo D., Davis M., 2006, ApJ, 648, 281
    • Yang Y., Zabludoff A. I., Zaritsky D., Mihos J. C., 2008, ApJ, 688, 945
    • Zabludoff A. I., Zaritsky D., Lin H., Tucker D., Hashimoto Y., Shectman S. A., Oemler A., Kirshner R. P., 1996, ApJ, 466, 104
    • Zolotov A. et al., 2015, MNRAS, 450, 2327
    • Zwaan M. A., Kuntschner H., Pracy M. B., Couch W. J., 2013, MNRAS, 432, 492
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • EC | ASTRODEEP

Cite this article