Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ørby, P.V.; Peel, Robert; Skjøth, C.; Schlünssen, V.; Bønløkke, J.H.; Ellermann, T.; Brændholt, A.; Sigsgaard, T.; Hertel, O.
Languages: English
Types: Unknown
Subjects: Q1

Classified by OpenAIRE into

mesheuropmc: food and beverages, otorhinolaryngologic diseases
Background.Co-exposure to air pollutants and allergenic pollen can elicit or exacerbate a number of conditions in susceptible individuals, including allergic airway diseases. Both concentrations and diurnal patterns are relevant when assessing potential health effects.\ud Methods.To assess which pollutants may be of particular relevance when investigating co-exposure with pollen, we examined yearly variation and diurnal patterns of pollutants on days with high pollen levels, and also for the remaining part of the pollen season. This analysis included measurements of grass and birch pollen, sulphur dioxide (SO2), ozone (O3), nitrogen dioxide (NO2) and particulate matter (PM) in the period 1997-2012.\ud Results.O3 concentrations were found to be higher on peak pollen days and high O3 concentrations coincide both seasonally and diurnally with high pollen counts, potentially leading to clinically relevant simultaneous co-exposure. NO2 and SO2 did not appear to coincide in concentration peaks with pollen counts, and concentrations were well below potential thresholds for adjuvant effects to the allergic reaction. Neither diurnal nor seasonal concentration peaks in PM were found to coincide with peaks in pollen concentrations, however daily average PM concentrations were higher on peak pollen days than on non-peak days.\ud Conclusion. This study indicates that when considering co-exposure effects from pollen and pollutants, O3 appears to be the most relevant pollutant to further examine for clinical effects of simultaneous co-exposures.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article