LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Konadu, Daniel Dennis; Sobral, Mourão Zenida; Allwood, Julian Mark; Richards, Keith Sheldon; Kopec, Grant M; McMahon, Richard Anthony; Fenner, Richard Andrew (2015)
Publisher: Global Environmental Change
Languages: English
Types: Article
Subjects: Geography, Planning and Development, Land-use change, Water abstraction, Carbon Plan, Environmental no-regrets, TD, Ecology, Global and Planetary Change, Energy–land–water nexus, Management, Monitoring, Policy and Law, HD, GE, Low-carbon energy pathways
Energy system pathways which are projected to deliver minimum possible deployment cost, combined with low Greenhouse Gas (GHG) emissions, are usually considered as ‘no-regrets’ options. However, the question remains whether such energy pathways present ‘no-regrets’ when also considering the wider environmental resource impacts, in particular those on land and water resources. This paper aims to determine whether the energy pathways of the UK’s Carbon Plan are environmental “no-regrets” options, defined in this study as simultaneously exhibiting low impact on land and water services resulting from resource appropriation for energy provision. This is accomplished by estimating the land area and water abstraction required by 2050 under the four pathways of the Carbon Plan with different scenarios for energy crop composition, yield, and power station locations. The outcomes are compared with defined limits for sustainable land appropriation and water abstraction.\ud \ud The results show that of the four Carbon Plan pathways, only the “Higher Renewables, more energy efficiency” pathway is an environmental “no-regrets” option, and that is only if deployment of power stations inland is limited. The study shows that policies for future low-carbon energy systems should be developed with awareness of wider environmental impacts. Failing to do this could lead to a setback in achieving GHG emission reductions goals, because of unforeseen additional competition between the energy sector and demand for land and water services in other sectors.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • AEA (2011). Pathways to 2050-Detailed Analyses, MARKAL Model Review and Scenarios for DECC's 4th Carbon Budget Evidence Base, Didcot: AEA. Available at https://www.gov.uk/government/uploads/system/uploads/attachment_data/ file/48073/2270-pathways-to-2050-detailed-analyses.pdf (accessed on 29/05/ 2014).
    • Allwood, J.M., Kopec, G., Sobral-Mourao, Z., Konadu, D. D., Richards, K., McMahon, R., & Fenner R., (2014). UK Foreseer tool [computer software]. Available at https:// www.foreseer.group.cam.ac.uk/foreseer-tool/.
    • Bajželj, B., Richards, K.S., Allwood, J.M., Smith, P., Dennis, J.S., Curmi, E., Gilligan, C.A., 2014. Importance of food-demand management for climate mitigation. N. Clim. Change 4 (10), 924-929. doi:http://dx.doi.org/10.1038/nclimate2353.
    • Biomass Energy Centre (BEC) (2007). Planting and Growing Miscanthus:Best Practice Guidelines for applicants to Defra's Energy Crops Scheme. Available at http://www.biomassenergycentre.org.uk/pls/portal/docs/PAGE/ BEC_TECHNICAL/SOURCES%20OF%20BIOMASS/ENERGY%20CROPS/GRASSES% 20AND%20NON-WOODY%20ENERGY%20CROPS/MISCANTHUS/MISCANTHUSGUIDE.PDF (Accessed 2/10/2015).
    • Butler, C., Demski, C., Parkhill, K., Pidgeon, N., Spence, A., 2015. Public values for energy futures: framing, indeterminacy and policy making. Energy Policy doi: http://dx.doi.org/10.1016/j.enpol.2015.01.035 (In Press).
    • Byers, E.A., Hall, J.W., Amezaga, J.M., 2014. Electricity generation and cooling water use: UK pathways to 2050. Global Environ. Change 25, 16-30. doi:http://dx.doi. org/10.1016/j.gloenvcha.2014.01.005.
    • Department of Energy and Climate Change (DECC) (2011). UK Coal mining dataset http://coal.decc.gov.uk/en/coal/cms/publications/mining/mining.aspx (Accessed 09/10/2014).
    • Department of Energy and Climate Change (DECC) (2012). DECC 2050 Pathways Calculator version 3.4.1. Available at Department of Energy and Climate Change (DECC) (2013). Energy Consumption in the UK (ECUK) dataset. Available at https://www.gov.uk/government/statistics/energy-consumption-in-the-uk (Accessed 03/06 /2014).
    • Department of Energy and Climate Change (DECC) (2013). Energy Consumption in the UK (ECUK) dataset. Available at https://www.gov.uk/government/statistics/ energy-consumption-in-the-uk (Accessed 03/06 /2014).
    • Department of Energy and Climate Change (DECC) (2014). Digest of UK Energy Statistics (DUKES) 2013. Available at https://www.gov.uk/government/ collections/digest-of-uk-energy-statistics-dukes#2013 (Accessed 09/10/2014).
    • Department of Energy and Climate Change (DECC) (2015). Digest of UK Energy Statistics (DUKES) 2014. Long Term Trends. Available from: https://www.gov. uk/government/uploads/system/uploads/attachment_data/file/338781/ Long_Term_Trends.pdf (Accessed 21/01/2015).
    • Department for Food, Environment and Rural Affairs (DEFRA, 2013) (Accessed 2014) Farming statistics - provisional crop areas, yields and livestock populations at 1 June 2013 - UK. Available at https://www.gov.uk/government/statistics/ farming-statistics-provisional-crop-areas-yields-and-livestock-populationsat-1-june-2013-uk (Accessed 2014).
    • Department for Food, Environment and Rural Affairs (DEFRA, 2013).
    • Department, for Environment Food and Rural Affairs (DEFRA) (2015). Annual water abstraction estimates for England and Wales. Available at https://www.gov.uk/ government/statistical-data-sets/env15-water-abstraction-tables (Accessed 2/ 10/2015).
    • Delgado, Anna, Rodriguez, Diego J., & Sohns, Antonia A., (2015). Thirsty energy: understanding the linkages between energy and water. Live wire knowledge notes series; no. 2015/41. Washington, DC: World Bank Group. Available at http://documents.worldbank.org/curated/en/2015/01/24084417/thirstyenergy-understanding-linkages-between-energy-water (Accessed 16/03/ 2015).
    • Droste-Franke, B., Carrier, M., Kaiser, M., Schreurs, M., Weber, C., Ziesemer, T., 2015. Political challenges in managing transitions of energy systems beyond pure energy-economic modelling. Improving Energy Decisions. Springer International Publishing, pp. 187-206. doi:http://dx.doi.org/10.1007/978-3- 319-11346-3_7.
    • Environment Agency (EA) (2007). Areas of water stress: final classification. GEHO1207BNOC-E-E. Bristol.
    • Environment Agency (EA) (2008). Water Resources in England and Wales-Current State and Future Pressures. Environment Agency, Department for Environment, Food & Rural Affairs, UK., Available at: http://webarchive.nationalarchives.gov. uk/20140328084622/ http://cdn.environment-agency.gov.uk/geho1208bpase-e.pdf (Accessed 10/01/2015).
    • Environment Agency (EA) (2010). Cooling Water Options for the New Generation of Nuclear Power Stations in the UK Available at https://www.gov.uk/government/ uploads/system/uploads/attachment_data/file/291077/scho0610bsot-e-e.pdf (accessed 16/03/2015).
    • Environment Agency (EA) (2011). Abstraction Statistics (ABSTAT). Available at http://data.gov.uk/dataset/abstraction-statistics-abstat-from-2000-onwards (accessed 23/11/2014).
    • Environment Agency (EA) (2013a). Abstraction Statistics (ABSTAT). Available at http://data.gov.uk/dataset/abstraction-statistics-abstat-from-2000-onwards (accessed 22/10/2014).
    • Environment Agency (EA) (2013b). Estimated abstractions from all surface and groundwaters by purpose and source: 2000-2012. Available at http://www. defra.gov.uk/statistics/environment/inland-water/ (accessed 08/11/2014).
    • Environment Agency (EA) (2013c). Current and future water availability -addendum: A refresh of the Case for Change analysis. Available at http:// publications.environment-agency.gov.uk (Accessed 20/02/2015).
    • Electric, Power Research Institute Inc. (EPRI) (2002). Water & Sustainability (Volume 3): U.S. Water Consumption for Power Production-The Next Half Century. Palo Alto, CA, USA, Available at http://www.epri.com/abstracts/Pages/ ProductAbstract.aspx?ProductId=000000000001006786 (Accessed 23/05/ 2014).
    • Engels, A., Huether, O., Schaefer, M., Held, H., 2013. Public climate-change skepticism, energy preferences and political participation. Global Environ. Change 23 (5), 1018-1027. doi:http://dx.doi.org/10.1016/j. gloenvcha.2013.05.008.
    • Förster, H., Lilliestam, J., 2010. Modeling thermoelectric power generation in view of climate change. Regional Environ. Change 10 (4), 327-338. doi:http://dx.doi. org/10.1007/s10113-009-0104-x.
    • Fischer, A., Peters, V., Vávra, J., Neebe, M., Megyesi, B., 2011. Energy use, climate change and folk psychology: does sustainability have a chance? Results from a qualitative study in five European countries. Global Environ. Change 21 (3), 1025-1034. doi:http://dx.doi.org/10.1016/j.gloenvcha.2011.04.008.
    • Gerbens-Leenes, P.W., Nonhebel, S., 2002. Consumption patterns and their effects on land required for food. Ecol. Econ. 42, 185-199. doi:http://dx.doi.org/10.1016/ s0921-8009(02) 00049-6.
    • Gerbens-Leenes, W., Hoekstra, A.Y., van der Meer, T.H., 2009. The water footprint of bioenergy. Proc. Nat. Acad. Sci. 106 (25), 10219-10223. doi:http://dx.doi.org/ 10.1073/pnas.0812619106.
    • Gerbens-Leenes, P.W., Van Lienden, A.R., Hoekstra, A.Y., Van der Meer, T.H., 2012. Biofuel scenarios in a water perspective: the global blue and green water footprint of road transport in 2030. Global Environ. Change 22 (3), 764-775. doi: http://dx.doi.org/10.1016/j.gloenvcha.2012.04.001.
    • HM Government (2008). Climate Change Act 2008 (c27). The Stationery Office Ltd., London.
    • HM Government, (2010). 2050 Pathways Analysis, Department of Energy and Climate Change.ã Crown Copyright. URN 10D/764. Available at: https://www. gov.uk/government/uploads/system/uploads/attachment_data/file/42562/ 216-2050-pathways-analysis-report.pdf (Accessed 28/09/2015).
    • HM Government, (2011). The Carbon Plan: Delivering our Low Carbon Future, Department of Energy & Climate Change, London, UK (2011) Available at https:// www.gov.uk/government/uploads/system/uploads/attachment_data/file/ 47613/3702-the-carbon-plan-delivering-our-low-carbon-future.pdf. (Accessed 09/08/2014).
    • Haberl, H., Erb, K.H., Krausmann, F., Bondeau, A., Lauk, C., Müller, C., Plutzar, C., Steinberger, J.K., 2011. Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change diets and yields. Biomass Bioenergy 35 (12), 4753-4769. doi:http://dx.doi.org/10.1016/j.biombioe.2011.04.035.
    • Hoggett, R., 2014. Technology scale and supply chains in a secure, affordable and low carbon energy transition. Appl. Energy 123, 296-306. doi:http://dx.doi.org/ 10.1016/j.apenergy.2013.12.006.
    • IEA (International Energy Agency) (2014). World Energy Outlook 2014. OECD/IEA, Paris. Available at http://www.worldenergyoutlook.org/publications/weo2014/ (Accessed 2/10/2015).
    • Kastner, T., Rivas, M.J.I., Koch, W., Nonhebel, S., 2012. Global changes in diets and the consequences for land requirements for food. Proc. Nat. Acad. Sci. 109 (18), 6868-6872. doi:http://dx.doi.org/10.1073/pnas.1117054109.
    • Konadu, D.D., Mourão, Z.S., Allwood, J.M., Richards, K.S., Kopec, G., McMahon, R., Fenner, R., 2015. Land use implications of future energy system trajectories-The case of the UK 2050Carbon Plan. Energy Policy 86, 328-337. doi:http://dx.doi. org/10.1016/j.enpol.2015.07.008.
    • Kramer, G.J., Haigh, M., 2009. No quick switch to low-carbon energy. Nature 462 (7273), 568-569. doi:http://dx.doi.org/10.1038/462568a.
    • Lovett, A., Sünnenberg, G., Dockerty, T., 2014. The availability of land for perennial energy crops in Great Britain. GCB Bioenergy 6 (2), 99-107. doi:http://dx.doi. org/10.1111/gcbb.12147.
    • Macknick, J., Newmark, R., Heath, G., & Hallett, K.C., (2011). A Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies. National Renewable Energy Laboratory, USA., Available at http:// www.nrel.gov/docs/fy11osti/50900.pdf (Accessed 23/05/2014).
    • Macknick, J., Newmark, R., Heath, G., Hallet, K.C., 2012. Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature. Environ. Res. Lett. doi:http://dx.doi.org/10.1088/ 1748-9326/7/4/045802.
    • McMahon, J.E., Price, S.K., 2011. Water and energy interactions. Annu. Rev. Environ. Res. 36, 163-191. doi:http://dx.doi.org/10.1146/annurev-environ-061110- 103827.
    • Milner, S., Holland, R.A., Lovett, A., Sunnenberg, G., Hastings, A., Smith, P., Wang, S., Taylor, G., 2015. Potential impacts on ecosystem services of land use transitions to second generation bioenergy crops in GB. GCB Bioenergy (in Print) doi: http://dx.doi.org/10.1111/gcbb.12263.
    • Murphy, J.M., Sexton, D.M.H., Jenkins, G.J., Booth, B.B.B., Brown, C.C., Clark, R.T., Collins, M., Harris, G.R., Kendon, E.J., Betts, R.A., Brown, S.J., Humphrey, K.A., McCarthy, M.P., McDonald, R.E., Stephens, A., Wallace, C., Warren, R., Wilby, R., Wood, R.A., 2009. UK Climate Projections Science Report: Climate Change Projections. Exeter, Met Office Hadley Centre, pp. 105-108.
    • National Energy Technology Laboratory (NETL) (2009). Water Requirements for Existing and Emerging Thermoelectric Plant Technologies. U.S. Department of Energy, National Energy Technology Laboratory, USA., Available at http://www.netl.doe.gov/File%20Library/Research/Energy%20Analysis/ Publications/DOE-NETL-402-080108-WaterRequirements.pdf (Accessed 23/05/2014).
    • Poff, N.L., Zimmerman, J.K., 2010. Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater Biol. 55 (1), 194-205. doi:http://dx.doi.org/10.1111/j.1365- 2427.2009.02272.x.
    • Prudhomme, C., Young, A., Watts, G., Haxton, T., Crooks, S., Williamson, J., Davies, H., Dadson, S., Allen, S., 2012. The drying up of Britain? A national estimate of changes in seasonal river flows from 11 regional climate model simulations. Hydrol. Process. 26 (7), 1115-1118. doi:http://dx.doi.org/10.1002/hyp.8434.
    • Qin, Y., Curmi, E., Kopec, G.M., Allwood, J.M., Richards, K.S., 2015. China's energywater nexus-assessment of the energy sector's compliance with the 3 Red Lines industrial water policy. Energy Policy 82, 131-143. doi:http://dx.doi.org/ 10.1016/j.enpol.2015.03.013.
    • Rasul, G., 2014. Food, water, and energy security in South Asia: a nexus perspective from the Hindu Kush Himalayan region. Environ. Sci. Policy 39, 35-48. doi: http://dx.doi.org/10.1016/j.envsci.2014.01.010.
    • Richter, G.M., Riche, A.B., Dailey, A.G., Gezan, S.A., Powlson, D.S., 2008. Is UK biofuel supply from Miscanthus water-limited? Soil Use Manage. 24 (3), 235-245. doi: http://dx.doi.org/10.1111/j.1475-2743.2008.00156.x.
    • Rowse, J., 1986. Measuring the user costs of exhaustible resource consumptions. Resour. Energy 8 (4), 365-392. doi:http://dx.doi.org/10.1016/0165-0572(86) 90011-3.
    • Schoonbaert B. (2012). The Water-Energy Nexus in the UK: Assessing the Impact of UK Energy Policy on Future Water Use in Thermoelectric Power Generation (MSc Thesis) King's College, University of London, UK (2012).
    • Schreiber, A., Zapp, P., Marx, J., 2015. Environmental aspects of CCS. In Carbon Capture, Storage and Use. Springer International Publishing, pp. 101-126.
    • Stamford, L., Azapagic, A., 2012. Life cycle sustainability assessment of electricity options for the UK. Int. J. Energy Res. 36 (14), 1263-1290. doi:http://dx.doi.org/ 10.1002/er.2962.
    • Stamford, L., Azapagic, A., 2014. Life cycle sustainability assessment of UK electricity scenarios to 2070. Energy Sustainable Dev. 23, 194-211. doi:http://dx.doi.org/ 10.1016/j.esd.2014.09.008.
    • Torvanger, A., Meadowcroft, J., 2011. The political economy of technology support: Making decisions about carbon capture and storage and low carbon energy technologies. Global Environ. Change 21 (2), 303-312. doi:http://dx.doi.org/ 10.1016/j.gloenvcha.2011.01.017.
    • Tyner, W.E., Taheripour, F., 2014. Advanced biofuels: economic uncertainties, policy options, and land use impacts. In: McCann, M., Buckeridge, M., Carpita, N. (Eds.), Plants and BioEnergy. Springer, New York, pp. 35-48.
    • Tzimas, E., (2011). Sustainable or Not? Impacts and Uncertainties of Low-Carbon Energy Technologies on Water. European Commission, Joint Research Centre, Seville, Spain. Available at https://ec.europa.eu/jrc/sites/default/files/ jrc_aaas2011_energy_water_tzimas.pdf (Accessed 23/05/2014).
    • US Department of Energy (DOE) (2006). Energy demands on water resources; Report to Congress on the interdependency of energy and water. Available at http://www.sandia.gov/energy-water/docs/121-RptToCongressEWwEIAcomments-FINAL.pdf (Accessed 20/06/2014).
    • US Department of Energy (DOE) /Oak Ridge National Laboratory (ORNL) Biomass Energy Data Book (2011). Available from: http://cta.ornl.gov/bedb/appendix_a/ Heat_Content_Ranges_for_Various_Biomass_Fuels.pdf (Accessed 27/08/14).
    • Williams E. D. & Simmons J. E., B.P. (2013). Water in the energy industry. An introduction. BP International Ltd. Available at www.bp.com/ energysustainabilitychallenge (Accessed 23/08/214).
    • van Vliet, M.T., Yearsley, J.R., Ludwig, F., Vögele, S., Lettenmaier, D.P., Kabat, P., 2012. Vulnerability of US and European electricity supply to climate change. Nat. Clim. Change 2 (9), 676-681. doi:http://dx.doi.org/10.1038/nclimate1546.
    • Wilson, P., Glithero, N.J., Ramsden, S.J., 2014. Prospects for dedicated energy crop production and attitudes towards agricultural straw use: the case of livestock farmers. Energy Policy 74, 101-110. doi:http://dx.doi.org/10.1016/j. enpol.2014.07.009.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article