LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Isic, G.; Milanovic, V.; Radovanovic, J.; Indjin, D.; Ikonic, Z.; Harrison, P. (2009)
Publisher: Elsevier
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Condensed Matter::Mesoscopic Systems and Quantum Hall Effect
We start from the fourth order nonparabolic and anisotropic conduction band bulk dispersion relation to obtain an one-band effective Hamiltonian which we apply to an AlGaSb symmetric double-barrier structure with resonant energies significantly (more than 200meV) above the well bottom. The spin-splitting is described by the k3 Dresselhaus spin-orbit coupling term modifying only the effective mass of the spin eigenstates in the investigated structure. Apart from the bulk-like resonant energy shift due to the band nonparabolicity, we obtain a substantial shift depending on the choice of boundary conditions for the envelope functions at interfaces between different materials. The shift of resonant energy levels leads to the change of spin-splitting and the magnitude of the dwell times. We attempt to explain the influence of both the nonparabolicity and boundary conditions choice by introducing various effective masses.\ud
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] V. I. Perel', S. A. Tarasenko, I. N. Yassievich, S. D. Ganichev, V. V. Belkov, and W. Prettl, Phys. Rev. B 67, 201304 (2003).
    • [2] M. M. Glazov, P. S. Alekseev, M. A. Odnoblyudov, V. M. Chistyakov, S. A. Tarasenko, and I. N. Yassievich, Phys. Rev. B 71, 155313 (2005).
    • [3] J. Radovanović et al. Opt. Mater. (2007), doi:10.1016/j.optmat.2007.05.037
    • [4] G. Isić, J. Radovanović, V. Milanović J. Appl. Phys. 102, 123704 (2007).
    • [5] J. Radovanović, V. Milanović, Z. Ikonić, and D. Indjin, J. Appl. Phys. 99, 073905 (2006).
    • [6] J. Radovanović, V. Milanović, Z. Ikonić, and D. Indjin, J. Phys. D: Appl. Phys. 40, 5066 (2007).
    • [7] R. Romo and S. E. Ulloa, Phys. Rev. B 72 121305 (2005).
    • [8] H. Mizuta and T. Tanoue, The Physics and Applications of Resonant Tunnelling Diodes, Cambridge University Press (1995).
    • [9] W. Li and Y. Guo, Phys. Rev. B 73, 205311 (2006).
    • [10] G. Dresselhaus, Phys. Rev. 100, 580 (1955).
    • [11] U. Ekenberg, Phys. Rev. B 40 7714 (1989).
    • [12] J. -M. Jancu, R. Scholz, E. A. de Andrada e Silva, G. C. La Rocca, Phys. Rev. B 72, 193201 (2005).
    • [13] U. Rossler, Solid State Commun. 49, 943 (1984).
    • [14] M. Braun, U. Rossler, J. Phys. C 18, 3365 (1985).
    • [15] S. Shokhovets, O. Ambacher, G. Gobsch, Phys. Rev. B 76, 125203 (2007).
    • [16] S. Shokhovets, G. Gobsch, and O. Ambacher, Phys. Rev. B 74, 155209 (2006).
    • [17] M. Tsuchiya, T. Matsusue, and H. Sakaki, Phys. Rev. Lett. 59, 2356 (1987).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article