LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Camps, Pelayo; El Achab, Rachid; Görbig, Diana Marina; Morral-Cardoner, Jordi; Muñoz-Torrero, Diego; Badia, Albert; Baños, Josep Eladi; Vivas, Nuria María; Barril, Xavier; Orozco, Modesto; Luque, Francisco Javier (1999)
Publisher: American Chemical Society
Languages: English
Types: Article
Subjects: Q1, QD
Identifiers:doi:10.1021/jm980620z
Eleven new 12-amino-6,7,10,11-tetrahydro-7,11-methanocycloocta[b]quinoline derivatives [tacrine (THA)−huperzine A hybrids, rac-21−31] have been synthesized as racemic mixtures and tested as acetylcholinesterase (AChE) inhibitors. For derivatives unsubstituted at the benzene ring, the highest activity was obtained for the 9-ethyl derivative rac-20, previously prepared by our group. More bulky substituents at position 9 led to less active compounds, although some of them [9-isopropyl (rac-22), 9-allyl (rac-23), and 9-phenyl (rac-26)] show activities similar to that of THA. Substitution at position 1 or 3 with methyl or fluorine atoms always led to more active compounds. Among them, the highest activity was observed for the 3-fluoro-9-methyl derivative rac-28 [about 15-fold more active than THA and about 9-fold more active than (−)-huperzine A]. The activity of some THA−huperzine A hybrids (rac-19, rac-20, rac-28, and rac-30), which were separated into their enantiomers by chiral medium-pressure liquid chromatography (chiral MPLC), using microcrystalline cellulose triacetate as the chiral stationary phase, showed the eutomer to be always the levorotatory enantiomer, their activity being roughly double that of the corresponding racemic mixture, the distomer being much less active. Also, the activity of some of these compounds inhibiting butyrylcholinesterase (BChE) was tested. Most of them [rac-27−31, (−)-28, and (−)-30], which are more active than (−)-huperzine A as AChE inhibitors, turned out to be quite selective for AChE, although not so selective as (−)-huperzine A. Most of the tested compounds 19−31 proved to be much more active than THA in reversing the neuromuscular blockade induced by d-tubocurarine. Molecular modeling of the interaction of these compounds with AChE from Torpedo californica showed them to interact as truly THA−huperzine A hybrids: the 4-aminoquinoline subunit of (−)-19 occupies the same position of the corresponding subunit in THA, while its bicyclo[3.3.1]nonadiene substructure roughly occupies the same position of the corresponding substructure in (−)-huperzine A, in agreement with the absolute configurations of (−)-19 and (−)-huperzine A.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (1) Davies, P.; Malony, A. J. F. Selective Loss of Central Cholinergic Neurons in Alzheimer's Disease. Lancet 1976, 2, 1403.
    • (2) Perry, E. K.; Perry, R. H.; Blessed, G.; Tomlinson, B. E. Necropsy Evidence of Central Cholinergic Deficits in Senile Dementia. Lancet 1977, 1, 189.
    • (3) White, P.; Goodhard, M. J.; Keet, J. K.; Hiley, C. R.; Carrasio, L. H.; William, I. E. I. Neocortical Cholinergic Neurons in Elderly People. Lancet 1977, 1, 668-671.
    • (4) Reisine, T. D.; Yamamura, H. I.; Bird, E. D.; Spokes, E.; Enna, S. J. Pre- and Postsynaptic Neurochemical Alterations in Alzheimer's Disease. Brain Res. 1978, 159, 477-481.
    • (5) Davies, P. Neurotransmitter-Related Enzymes in Senile Dementia of the Alzheimer Type. Brain Res. 1979, 171, 319-327.
    • (6) Hollander, E.; Mohs, R. C.; Davis, K. L. Cholinergic Approaches to the Treatment of Alzheimer's Disease. Br. Med. Bull. 1986, 42, 97-100.
    • (7) Hershenson, F. M.; Moos, W. H. Drug Development for Senile Cognitive Decline. J. Med. Chem. 1986, 29, 1125-1130.
    • (8) Davis, K. L.; Powchik, P. Tacrine. Lancet 1995, 345, 625-630.
    • (9) Sugimoto, H.; Iimura, Y.; Yamanishi, Y.; Yamatsu, K. Synthesis and Structure-Activity Relationships of Acetylcholinesterase Inhibitors: 1-Benzyl-4-[(5,6-dimethoxy-1-oxoindan-2-yl)methyl]- piperidine Hydrochloride and Related Compounds. J. Med. Chem. 1995, 38, 4821-4829.
    • (10) Prous, J.; Rabasseda, X.; Castan˜ er, J. SDZ-ENA-713 Cognition Enhancer Acetylcholinesterase Inhibitor. Drugs Future 1996, 19, 656-658.
    • (11) Brufani, M.; Filocamo, L.; Lappa, S.; Maggi, A. New Acetylcholinesterase Inhibitors. Drugs Future 1997, 22, 397-410.
    • (12) Kozikowsky, A. P.; Campiani, G.; Sun, L. Q.; Wang, S.; Saxena, A.; Doctor, B. P. Identification of a More Potent Analogue of the Naturally Ocurring Alkaloid Huperzine A. Predictive Molecular Modeling of its Interaction with AChE. J. Am. Chem. Soc. 1996, 118, 11357-11362.
    • (13) Harel, M.; Quin, D. M.; Nair, H. K.; Silman, I.; Sussman, J. L. The X-ray Structure of a Transition State Analogue Complex Reveals the Molecular Origins of the Catalytic Power and Substrate Specificity of Acetylcholinesterase. J. Am. Chem. Soc. 1996, 118, 2340-2346.
    • (14) Aguado, F.; Badia, A.; Ban˜ os, J. E.; Bosch, F.; Bozzo, C.; Camps, P.; Contreras, J.; Dierssen, M.; Escolano, C.; Go¨rbig, D. M.; Mun˜ oz-Torrero, D.; Pujol, M. D.; Simon, M.; V a´zquez, M. T.; Vivas, N. M. Synthesis and Evaluation of Tacrine-Related Compounds for the Treatment of Alzheimer's Disease. Eur. J. Med. Chem. 1994, 29, 205-221.
    • (15) Pang, Y.-P.; Quiram, P.; Jelacic, T.; Hong, F.; Brimijoin, S. Highly Potent, Selective, and Low Cost Bis-Tetrahydroaminacrine Inhibitors of Acetylcholinesterase. J. Biol. Chem. 1996, 271, 23646-23649.
    • (16) Badia, A.; Ban˜ os, J. E.; Camps, P.; Contreras, J.; Go¨rbig, D. M.; Mun˜ oz-Torrero, D.; Simon, M.; Vivas, N. M. Synthesis and Evaluation of Tacrine-Huperzine A Hybrids as Acetylcholinesterase Inhibitors of Potential Interest for the Treatment of Alzheimer's Disease. Bioorg. Med. Chem. 1998, 6, 427-440.
    • (17) Camps, P.; Contreras, J.; Font-Bardia, M.; Morral, J.; Mun˜ ozTorrero, D.; Solans, X. Enantioselective Synthesis of TacrineHuperzine A Hybrids. Preparative Chiral MPLC Separation of their Racemic Mixtures and Absolute Configuration Assignments by X-ray Diffraction Analysis. Tetrahedron: Asymmetry 1998, 9, 835-849.
    • (18) Sussman, J. L.; Harel, M.; Frolow, F.; Oefner, C.; Goldman, A.; Toker, L.; Silman, I. Atomic Structure of Acetylcholinesterase from Torpedo californica: A Prototypic Acetylcholine-Binding Protein. Science 1991, 253, 872-879.
    • (19) Harel, M.; Schalk, I.; Ehret-Sabatier, L.; Bouet, F.; Goeldner, M.; Hirth, C.; Axelsen, P.; Silman, I.; Sussman, J. L. Quaternary Ligand Binding to Aromatic Residues in the Active-Site Gorge of Acetylcholinesterase. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 9031-9035.
    • (20) Raves, M. L.; Harel, M.; Pang, Y.-P.; Silman, I.; Kozikowski, A. P.; Sussman, J. L. Structure of Acetylcholinesterase Complexed with the Nootropic Alkaloid, (-)-Huperzine A. Nature Struct. Biol. 1997, 4, 57-63.
    • (21) Kimoto, K.; Imagawa, T.; Kawanisi, M. Reduction of 7-Methylenebicyclo[3.3.1]nonan-3-one and Related Compounds: Structural Investigation of the Products. Bull. Chem. Soc. Jpn. 1972, 45, 3698-3702.
    • (22) Liu, J.-H.; Kovacic, P. Diazotization of endo-7-Aminomethylbicyclo[3.3.1]nonan-3-one and endo-3-Aminomethylbicyclo[3.3.1]nonane. J. Org. Chem. 1973, 38, 3462-3466.
    • (23) Camps, P.; El Achab, R.; Font-Bardia, M.; Go¨rbig, D.; Morral, J.; Mu n˜oz-Torrero, D.; Solans, X.; Simon, M. Easy Synthesis of 7-Alkylbicyclo[3.3.1]non-6-en-3-ones by Silica Gel-Promoted Fragmentation of 3-Alkyl-2-oxaadamant-1-yl Mesylates. Tetrahedron 1996, 52, 5867-5880.
    • (24) Schlosser, M. Organoalkali Reagents. In Organometallics in Synthesis. A Manual; Schlosser, M., Ed.; John Wiley & Sons: Chichester, 1994; pp 62-64.
    • (25) Wakefield, B. J. Organolithium Methods. In Best Synthetic Methods; Katritzky, A. R., Meth-Cohn, O., Rees, C. W., Eds.; Academic Press: London, 1988; pp 176-179.
    • (26) Imamoto, T. Organocerium Reagents. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 1, pp 231-250.
    • (27) Denmark, S. E.; Weber, T.; Piotrowski, D. W. Organocerium additions to SAMP-hydrazones: General synthesis of chiral amines. J. Am. Chem. Soc. 1987, 109, 2224-2225.
    • (28) Crossland, R. K.; Servis, K. L. A Facile Synthesis of Methanesulfonate Esters. J. Org. Chem. 1970, 35, 3195-3196.
    • (29) Kozikowski, A. P.; Campiani, G.; Tu¨ ckmantel, W. An Approach to Open Chain and Modified Heterocyclic Analogues of the Acetylcholinesterase Inhibitor, Huperzine A, through a Bicyclo[3.3.1]nonane Intermediate. Heterocycles 1994, 39, 101-116.
    • (30) Ellman, G. L.; Courtney, K. D.; Andres, B., Jr.; Featherstone, R. M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961, 7, 88-95.
    • (31) Bowman, W. C. Pharmacology of Neuromuscular Junction, 2nd ed.; Butterworth: London, 1990.
    • (32) Kawakami, H.; Ohuchi, R.; Kitano, M.; Ono, K. Quinoline Derivatives. Patent EPO 0 268 871 A1, Sumitomo Pharmaceuticals Co., Ltd., 1987.
    • (33) Benzi, G.; Moretti, A. Is there a Rationale for the Use of Acetylcholinesterase Inhibitors in the Therapy of Alheimer's Disease? Eur. J. Pharmacol. 1998, 346, 1-13.
    • (34) Bosch, F.; Morales, M.; Badia, A.; Ban˜ os, J. E. Comparative Effects of Velnacrine, Tacrine and Physostigmine on the Twitch Responses in the Rat Phrenic-Hemidiaphragm Preparation. Gen. Pharmacol. 1993, 24, 1101-1105.
    • (35) Bowman, W. C.; Pryor, C.; Marshall, I. G. Presynaptic Receptors in the Neuromuscular Junction. In Presynaptic Receptors and the Question of Autoregulation of Neurotransmitter Release; Kalsner, S., Westfall, T. C., Eds.; New York Academy of Sciences: New York, 1990; Vol. 604, pp 69-81.
    • (36) Thesleff, S.; Sellin, L. C.; Tagerud, S. Tetrahydroaminoacridine (Tacrine) Stimulates Neurosecretion at Mammalian Motor Endplates. Br. J. Pharmacol. 1990, 100, 487-490.
    • (37) These results were estimated using the respective crystallographic structures for the enzyme complexes THA (1ACJ) and (-)-huperzine A (1VOT). However, similar values were obtained when docking of THA and (-)-huperzine A were modeled in 1VOT and 1ACJ, respectively. All subsequent calculations for the hybrid compounds were performed utilizing the enzyme structure in 1VOT.
    • (38) Kozikowski, A. P. Huperzine A Analogues as Acetylcholinesterase Inhibitors. U.S. Patent 5104880, 1992..
    • (39) Pang, Y.-P.; Hong, F.; Quiram, P.; Jelacic, T.; Brimijoin, S. Synthesis of Alkylene Linked Bis-THA and Alkylene Linked Benzyl-THA as Highly Potent and Selective Inhibitors and Molecular Probes of Acetylcholinesterase. J. Chem. Soc., Perkin Trans. 1 1997, 171-176.
    • (40) McKinney, M.; Miller, J. H.; Yamada, F.; Tuckmantel, W.; Kozikowski, A. P. Potencies and Stereoselectivities of Enantiomers of Huperzine A for Inhibition of Rat Cortical Acetylcholinesterase. Eur. J. Pharmacol. 1991, 203, 303-305.
    • (41) Yamada, F.; Kozikowski, A. P.; Reddy, E. R.; Pang, Y.-P.; Miller, J. H.; McKinney, M. A Route to Optically Pure (-)-Huperzine A: Molecular Modeling and in Vitro Pharmacology. J. Am. Chem. Soc. 1991, 113, 4695-4696.
    • (42) Ashani, Y.; Peggins III, J. O.; Doctor, B. P. Mechanism of Inhibition of Cholinesterases by Huperzine A. Biochem. Biophys. Res. Commun. 1992, 184, 719-726.
    • (43) Pang, Y.-P.; Kozikowski, A. P. Prediction of the Binding of Huperzine A in Acetylcholinestererase by Docking Studies. J. Comput.-Aided Mol. Des. 1994, 8, 669-681.
    • (44) Ma, J. C.; Dougherty, D. A. The Cation-ð Interaction. Chem. Rev. 1997, 97, 1303-1324.
    • (45) Cubero, E.; Luque, F. J.; Orozco, M. Is Polarization Important in Cation-ð Interactions? Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 5976-5980.
    • (46) Gregor, V. E.; Emmerling, M. R.; Lee, C.; Moore, C. J. The Synthesis and in Vitro Acetylcholinesterase and Butyrylcholinesterase Inhibitory Activity of Tacrine (Cognex) Derivatives. Bioorg. Med. Chem. Lett. 1992, 2, 861-864.
    • (47) Jaen, J. C.; Gregor, V. E.; Lee, C.; Davis, R.; Emmerling, M. Acetylcholinesterase Inhibition by Fused Dihydroquinazoline Compounds. Bioorg. Med. Chem. Lett. 1996, 6, 737-742.
    • (48) Kozikowski, A. P.; Xia, Y.; Reddy, E. R.; T u¨ckmantel, W.; Hanin, I.; Tang, X. C. Synthesis of Huperzine A and its Analogues and their Anticholinesterase Activity. J. Org. Chem. 1991, 56, 4636- 4645.
    • (49) Mattos, C.; Rasmussen, B.; Ding, X.; Petsko, G. A.; Ringe, D. Analogous Inhibitors of Elastase Do Not Always Bind Analogously. Nature Struct. Biol. 1994, 1, 55-58.
    • (50) Fisher, T. H.; Meierhoefer, A. W. Kinetic Study of the NBromosuccinimide Bromination of Some 4-Substituted 3-Cyanotoluenes. J. Org. Chem. 1978, 43, 220-224.
    • (51) Bogert, M. T.; Hoffman, A. Some Acyl Derivatives of Homoanthranilic Nitrile, and the 7-Methyl-4-ketodihydroquinazolines Prepared Therefrom. J. Am. Chem. Soc. 1905, 27, 1293-1301.
    • (52) Hunziker, F.; Fischer, R.; Kipfer, P.; Schmutz, J.; Bu¨ rki, H. R.; Eichenberger, E.; White, T. G. Seven-membered Heterocycles. 28. Neuroleptic Piperazinyl Derivatives of 10H-Thieno[3,2-c][1]- benzazepines and 4H-Thieno[2,3-c][1]benzazepines. Eur. J. Med. Chem. 1981, 16, 391-398.
    • (53) Preparation of isopropyllithium: Gilman, H.; Moore, F. W.; Baine, O. Secondary and Tertiary Alkyllithium Compounds and Some Interconversion Reactions with Them. J. Am. Chem. Soc. 1941, 63, 2479-2485.
    • (54) Preparation of allyllithium: Wakefield, B. J. Organolithium Methods. In Best Synthetic Methods; Katritzky, A. R., MethCohn, O., Rees, C. W., Eds.; Academic Press: London, 1988; pp 47-49.
    • (55) Ba n˜os, J. E.; Badia, A.; Jane´, F. Facilitatory Action of Adrenergic Drugs on Muscle Twitch Evoked by Nerve Stimulation in the Curarized Rat Phrenic-Hemidiaphragm. Arch. Int. Pharmacodyn. 1988, 293, 219-227.
    • (56) Riesz, M.; Kapati, E.; Szporni, L. Antagonism of Non-Depolarizing Neuromuscular Blockade by Aminopyridines in Cats. J. Pharm. Pharmacol. 1986, 38, 156-158.
    • (57) Protein Data Bank entries are 1ACJ (tacrine-AChE-tacrine) and 1VOT [(-)-huperzine A-AChE].
    • (58) Pearlman, D. A.; Case, D. A.; Caldwell, J. C.; Ross, W. S.; Cheatham, T. E.; Ferguson, D. M.; Seibel, G. L.; Singh, U. C.; Weiner, P.; Kollman, P. A. AMBER 4.1; University of California: San Francisco, 1995.
    • (59) Wlodek, S. T.; Antosiewicz, J.; McCammon, J. A.; Straatsma, T. P.; Gilson, M. K.; Briggs, J. M.; Humblet, C.; Sussman, J. L. Binding of Tacrine and 6-Chlorotacrine by Acetylcholinesterase. Biopolymers 1996, 38, 109-117.
    • (60) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; AlLaham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; HeadGordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94, Rev. A.1; Gaussian Inc.: Pittsburgh, 1995.
    • (61) Cornell, W. D.; Cieplak, P.; Baily, C. I.; Kollman, P. A. Application of RESP Charges to Calculate Conformational Energies, Hydrogen Bond Energies, and Free Energies of Solvation. J. Am. Chem. Soc. 1993, 115, 9620-9631.
    • (62) Singh, U. C.; Kollman, P. A. An Approach to Computing Electrostatic Charges for Molecules. J. Comput. Chem. 1984, 5, 129-145.
    • (63) Orozco, M.; Luque, F. J. On the Use of AM1 and MNDO Wave functions to Compute Accurate Electrostatic Charges. J. Comput. Chem. 1990, 8, 909-923.
    • (64) Gilson, M. K.; Honig, B. H. Calculation of the Total Electrostatic Energy of a Macromolecular System: Solvation Energies, Binding Energies, and Conformational Analysis. Proteins 1988, 4, 7-18.
    • (65) Gilson, M. K.; Sharp, K. A.; Honig, B. H. Calculating the Electrostatic Potential of Molecules in Solution: Method and Error Assessment. J. Comput. Chem. 1988, 9, 327-335.
    • (66) Insight-II; Biosym Technologies: San Diego, 1993.
    • (67) Eisenberg, D.; McLachlan, A. D. Solvation Energy in Protein Folding and Binding. Nature 1986, 319, 199-203.
    • (68) Hermann, R. B. Modeling Hydrophobic Solvation of Nonspherical Systems: Comparison of Use of Molecular Surface Area with Accessible Surface Area. J. Comput. Chem. 1997, 18, 115-125.
    • (69) Sitkoff, D.; Sharp, K. A.; Honig, B. Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models. J. Phys. Chem. 1994, 98, 1978-1988.
    • (70) Tannor, D. J.; Marten, B.; Murphy, R.; Friesner, R. A.; Sitkoff, D.; Nicholls, A.; Ringnalda, M.; Goddard, W. A., III; Honig, B. Accurate First Principles Calculation of Molecular Charge Distributions and Solvation Energies from ab initio Quantum Mechanics and Continuum Dielectric Theory. J. Am. Chem. Soc. 1994, 116, 11875-11882.
  • No related research data.
  • No similar publications.
  • BioEntity Site Name
    1acjProtein Data Bank
    1votProtein Data Bank

Share - Bookmark

Cite this article