LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Gu, Yian; Wei, Zhong; Wang, Xueqi; Friman, Ville-Petri; Huang, Jianfeng; Wang, Xiaofang; Mei, Xinlan; Xu, Yangchun; Shen, Qirong; Jousset, Alexandre
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

mesheuropmc: food and beverages, fungi
Plant-derived root exudates modulate plant-microbe interactions and may play an important role in pathogen suppression. Root exudates may, for instance, directly inhibit pathogens or alter microbiome composition. Here, we tested if plants modulate their root exudation in the presence of a pathogen and if these shifts alter the rhizosphere microbiome composition. We added exudates from healthy and Ralstonia solanacearum-infected tomato plants to an unplanted soil and followed changes in bacterial community composition. The presence of pathogen changed the exudation of phenolic compounds and increased the release of caffeic acid. The amendment of soils with exudates from the infected plants led to a development of distinct and less diverse soil microbiome communities. Crucially, we could reproduce similar shift in microbiome composition by adding pure caffeic acid into the soil. Caffeic acid further suppressed R. solanacearum growth in vitro. We conclude that pathogen-induced changes in root exudation profile may serve to control pathogen both by direct inhibition and by indirectly shifting the composition of rhizosphere microbiome.

Share - Bookmark

Cite this article