Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Howard, Joseph L.; Schotten, Christiane; Alston, Stephen T.; Browne, Duncan L. (2016)
Publisher: RSC Publishing
Languages: English
Types: Article
Subjects: QD
We report an operationally simple, metal-free approach for the late-stage introduction of the important lipophilic hydrogen-bond donor motif, SCF2H. This reaction converts diaryl- and dialkyl-disulfides into the corresponding aryl/alkyl–SCF2H through the nucleophilic transfer of a difluoromethyl group with good functional group tolerance. This method is notable for its use of commercially available TMSCF2H, and does not rely on the need for handling of sensitive metal complexes.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 2 (a) B. E. Smart, J. Fluorine Chem., 2001, 109, 3; (b) M. Morgenthaler, E. Schweizer, A. Hoffmann-Ro¨der, F. Benini, R. E. Martin, G. Jaeschke, B. Wagner, H. Fischer, S. Bendels, D. Zimmerli, J. Schneider, F. Diederich, M. Kansy and K. Mu¨ller, ChemMedChem, 2007, 2, 1100; (c) R. Filler and R. Saha, Future Med. Chem., 2009, 1, 777; (d) D. B. Berkowitz and M. Bose, J. Fluorine Chem., 2001, 112, 13; (e) D. O'Hagan, J. Fluorine Chem., 2010, 131, 1071.
    • 3 (a) K. Mu¨ller, C. Faeh and F. Diederich, Science, 2007, 317, 1881; (b) M. Schlosser, Angew. Chem., Int. Ed., 1998, 110, 1496; (c) A. Bondi, J. Phys. Chem., 1964, 68, 441; (d) J. D. Dunitz and R. Taylor, Chem. - Eur. J., 1997, 3, 89.
    • 4 (a) B. D. Key, R. D. Howell and C. S. Criddle, Environ. Sci. Technol., 1997, 31, 2445; (b) D. O'Hagan, C. Schaffrath, S. L. Cobb, J. T. G. Hamilton and C. D. Murphy, Nature, 2002, 416, 279; (c) G. W. Gribble, Naturally Occurring Organofluorines, in Handbook of Environmental Chemistry, ed. A. H. Neilson, Springer-Verlag, Berlin, vol. 3, part N, 2002.
    • 5 (a) X. Chen, S. Hussain, S. Parveen, S. Zhang, Y. Yang and C. Zhu, Curr. Med. Chem., 2012, 19, 3578; (b) R. Bentley, Chem. Soc. Rev., 2005, 34, 609.
    • 6 (a) V. N. Boiko, Beilstein J. Org. Chem., 2010, 6, 880; (b) J. F. Giudicelli, C. Richer and A. Berdeaux, Br. J. Clin. Pharmacol., 1976, 3, 113; (c) M. Diaferia, F. Veronesi, G. Morganti, L. Nisoli and D. P. Fioretti, Parasitol. Res., 2013, 112, 163.
    • 7 C. Hansch, A. Leo, S. H. Unger, K. H. Kim, D. Nikaitani and E. J. Lien, J. Med. Chem., 1973, 16, 1207.
    • 8 (a) J. Hine and J. J. Porter, J. Am. Chem. Soc., 1960, 82, 6118; (b) P. Deprez and J. P. Vevert, J. Fluorine Chem., 1996, 80, 159; (c) Y. Zafrani, G. Sod-Moriah and Y. Segall, Tetrahedron, 2009, 65, 5278; (d) K. Fuchibe, M. Bando, R. Takayama and J. Ichikawa, J. Fluorine Chem., 2015, 171, 133; (e) V. P. Mehta and M. F. Greaney, Org. Lett., 2013, 15, 5036; ( f ) G. K. Surya Prakash, S. Krishnamoorthy, S. Kar and G. A. Olah, J. Fluorine Chem., 2015, 180, 186; (g) W. Zhang, J.-M. Zhu and J.-B. Hu, Tetrahedron Lett., 2008, 49, 5006; (h) Y. Fujiwara, J. A. Dixon, R. A. Rodriguez, R. D. Baxter, D. D. Dixon, M. R. Collin, D. G. Blackmond and P. S. Baran, J. Am. Chem. Soc., 2012, 134, 1494; (i) W. Zhang, F. Wang and J. Hu, Org. Lett., 2009, 11, 2109; ( j) G. K. Surya Prakash, Z. Zhang, F. Wang, C.-F. Ni and G. A. Olah, J. Fluorine Chem., 2011, 132, 792; (k) L.-C. Li, F. Wang, C.-F. Ni and J.-B. Hu, Angew. Chem., Int. Ed., 2013, 52, 12390.
    • 9 D. Zhu, Y. Gu, L. Lu and Q. Shen, J. Am. Chem. Soc., 2015, 137, 10547.
    • 10 J. Wu, Y. Gu, X. Leng and Q. Shen, Angew. Chem., Int. Ed., 2015, 54, 7648.
    • 11 (a) B. Bayarmagnai, C. Matheis, K. Jouvin and L. J. Gooßen, Angew. Chem., Int. Ed., 2015, 54, 5753; (b) K. Jouvin, C. Matheis and L. J. Gooßen, Chem. - Eur. J., 2015, 21, 14324; (c) C. Matheis, M. Wang, T. Krause and L. J. Gooßen, Synlett, 2015, 1628; (d) G. Danoun, B. Bayarmagnai, M. F. Gruenberg and L. J. Gooßen, Chem. Sci., 2014, 5, 1312.
    • 12 During the preparation of this manuscript, we became aware of the work of J.-B. Han, H.-L. Qin, S.-H. Ye, L. Zhu and C.-P. Zhang, J. Org. Chem., 2016, 81, 2506.
    • 13 T. Billard and B. R. Langlois, Tetrahedron Lett., 1996, 37, 6865.
    • 14 T. Hagiwara and T. Fuchikami, Synlett, 1995, 717.
    • 15 (a) Y. Zhao, W. Huang, J. Zheng and J. Hu, Org. Lett., 2011, 13, 5342; (b) P. S. Fier and J. F. Hartwig, J. Am. Chem. Soc., 2012, 134, 5524.
    • 16 See the ESI† for details of this method adapted from A. Khazaei, M. A. Zolfigol and A. Rostami, Synthesis, 2004, 2959.
    • 17 Isolated by a counter-current style extraction and column chromatography, see the ESI† for details. Value of 'isolated yield' proven to be largely subjective owing to the volatility of these compounds, 19F-NMR with an internal standard provides a less subjective measure of reaction performance.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article