LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Pooley, Emma L.; Kennedy, Malcolm W.; Nager, Ruedi G. (2014)
Publisher: Elsevier BV
Journal: Animal Behaviour
Languages: English
Types: Article
Subjects: Animal Science and Zoology, Ecology, Evolution, Behavior and Systematics
Increased embryo mortality is the most commonly cited cause of reduced fitness in inbred organisms. Reduced embryo survival may be the result of reduced parental expenditure by inbred individuals and here we tested the hypothesis that inbreeding results in impaired incubation behaviour in captive zebra finches. We compared incubation attentiveness of inbred female zebra finches (derived from full-sibling mating) with that of control females (derived from unrelated parents) and found a statistically significant inbreeding depression of 17% in incubation attentiveness. This shows that inbreeding can significantly influence parental behaviour. Despite a reduction in the amount of time inbred females spent incubating, their partners were able to compensate for the reduced incubation attentiveness. Incubation temperature also did not differ between inbred and control females. To test for the effect of incubation behaviour, we fostered eggs laid by control females to either inbred or control females at the end of laying. Eggs that were incubated by inbred females had an 8.5% lower hatching success than eggs incubated by control females and, although based on a relatively small sample and not statistically significant, the magnitude of the difference was consistent with differences in hatching success observed in the wild under relatively benign environmental conditions. Thus, under more challenging environmental conditions usually encountered in the wild, the reduced incubation attentiveness of inbred females could provide one proximate explanation for the consistent finding of decreased hatching success with increasing maternal inbreeding in birds.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Armbruster, P., & Reed, D. H. (2005). Inbreeding depression in benign and stressful environments. Heredity, 95, 235e242.
    • Bailey, N. T. J. (1995). Statistical methods in biology (3rd ed.). Cambridge, U.K.: Cambridge University Press.
    • Becker, W. A. (1984). Manual of quantitative genetics (4th ed.). Pullman, WA: Academic Enterprises.
    • Biebach, H. (1984). Effect of clutch size and time of day on the energy expenditure of incubating starlings (Sturnus vulgaris). Physiological Zoology, 57, 26e31.
    • Bolund, E., Martin, K., Kempenaers, B., & Forstmeier, W. (2010). Inbreeding depression of sexually selected traits and attractiveness in the zebra finch. Animal Behaviour, 79, 947e955.
    • Bryan, S. M., & Bryant, D. M. (1999). Heating nest-boxes reveals an energetic constraint on incubation behaviour in great tits, Parus major. Proceedings of the Royal Society B: Biological Sciences, 266, 157e162.
    • Burley, N., Price, D. K., & Zann, R. A. (1992). Bill color, reproduction and condition effects in wild and domesticated zebra finches. Auk, 109, 13e23.
    • Charlesworth, D., & Willis, J. H. (2009). The genetics of inbreeding depression. Nature Reviews Genetics, 10, 783e796.
    • Cook, M. I., Beissinger, S. R., Toranzos, G. A., & Arendt, W. J. (2005). Incubation reduces microbial growth on eggshells and the opportunity for trans-shell infection. Ecology Letters, 8, 532e537.
    • Cordero, P., Aparicio, J. M., & Veiga, J. P. (2004). Parental genetic characteristics and hatching success in the spotless starling, Sturnus unicolor. Animal Behaviour, 67, 637e642.
    • Crnokrak, P., & Roff, D. A. (1999). Inbreeding depression in the wild. Heredity, 83, 260e270.
    • Deeming, D. C. (2002). Avian incubation: Behaviour, environment and evolution. Oxford, U.K.: Oxford University Press.
    • De Heij, M. E., Van der Graaf, A. J., Hafner, D., & Tinbergen, J. M. (2007). Metabolic rate of nocturnal incubation in female great tits, Parus major, in relation to clutch size measured in a natural environment. Journal of Experimental Biology, 210, 2006e2012.
    • DeRose, M. A., & Roff, D. A. (1999). A comparison of inbreeding depression in lifehistory and morphological traits in animals. Evolution, 53, 1288e1292.
    • Dingemanse, N. J., & Dochtermann, N. A. (2013). Quantifying individual variation in behaviour: mixed-effect modelling approaches. Journal of Animal Ecology, 82, 39e54.
    • DuRant, S. E., Hopkins, W. A., Hepp, G. R., & Walters, J. R. (2013). Ecological, evolutionary, and conservation implications of incubation temperaturedependent phenotypes in birds. Biological Reviews, 88, 499e509.
    • Eikenaar, C., Berg, M. L., & Komdeur, J. (2003). Experimental evidence for the influence of food availability on incubation attendance and hatching asynchrony in the Australian reed warbler Acrocephalus australis. Journal of Avian Biology, 34, 419e427.
    • El-Wailly, A. (1966). Energy requirements for egg-laying and incubation in the zebra finch, Taeniopygia guttata. Condor, 68, 582e594.
    • Farkas, J., Curik, I., Csato, L., Csornyei, Z., Baumung, R., & Nagy, I. (2007). Bayesian inference of inbreeding effects on litter size and gestation length in Hungarian Landrace and Hungarian Large White pigs. Livestock Science, 112, 109e114.
    • Forstmeier, W., Segelbacher, G., Mueller, J. C., & Kempenaers, B. (2007). Genetic variation and differentiation in captive and wild zebra finches (Taeniopygia guttata). Molecular Ecology, 16, 4039e4050.
    • Frankel, O. H., & Soule, M. E. (1981). Conservation and evolution. Cambridge, U.K.: Cambridge University Press.
    • Frankham, R., Ballou, J. D., & Briscoe, D. A. (2002). Introduction to conservation genetics. Cambridge, U.K.: Cambridge University Press.
    • Gilby, A. J., Mainwaring, M. C., & Griffith, S. C. (2013). Incubation behaviour and hatching synchrony differ in wild and captive populations of the zebra finch. Animal Behaviour, 85, 1329e1334.
    • Gorman, H. E., & Nager, R. G. (2003). State-dependent incubation behaviour in the zebra finch. Animal Behaviour, 65, 745e754.
    • Gorman, H. E., & Nager, R. G. (2004). Prenatal developmental conditions have longeterm effects on offspring fecundity. Proceedings of the Royal Society B: Biological Sciences, 271(1551), 1923e1928.
    • Gorman, H. E., Arnold, K. E., & Nager, R. G. (2005a). Incubation effort in relation to male attractiveness in zebra finches Taeniopygia guttata. Journal of Avian Biology, 36, 413e420.
    • Gorman, H. E., Orr, K. J., Adam, A., & Nager, R. G. (2005b). Effects of incubation conditions and offspring sex on embryonic development and survival in the zebra finch Taeniopygia guttata. Auk, 122, 1239e1248.
    • Griffith, S. C., & Buchanan, K. L. (2010). Maternal effects in the zebra finch: a model mother reviewed. Emu, 110, 251e267.
    • Harrison, F., Barta, Z., Cuthill, I., & Szekely, T. (2009). How is sexual conflict over parental care resolved? A meta-analysis. Journal of Evolutionary Biology, 22, 1800e1812.
    • Hill, D. L., Lindstrom, J., & Nager, R. G. (2011). Carry-over effects of male extra-pair copulation opportunity on biparental effort in zebra finches. Behavioral Ecology and Sociobiology, 65, 2049e2059.
    • Houston, A. I., Szekely, T., & McNamara, J. M. (2005). Conflict between parents over care. Trends in Ecology & Evolution, 20, 33e38.
    • Jimenez, J. A., Hughes, K. A., Alaks, G., Graham, L., & Lacy, R. C. (1994). An experimental study of inbreeding depression in a natural habitat. Science, 266, 271e273.
    • Jones, K. M., Ruxton, G. D., & Monaghan, P. (2002). Model parents: is full compensation for reduced partner nest attendance compatible with stable biparental care? Behavioral Ecology, 13, 838e843.
    • Keller, L. F. (1998). Inbreeding and its effects in insular population of song sparrows Melospiza melodia. Evolution, 52, 240e250.
    • Keller, L. F., & Waller, D. (2002). Inbreeding effects in wild populations. Trends in Ecology & Evolution, 17, 230e241.
    • Ketola, T., & Kotiaho, J. S. (2009). Inbreeding, energy use and condition. Journal of Evolutionary Biology, 22, 770e781.
    • Krist, M. (2011). Egg size and offspring quality: a meta-analysis. Biological Reviews, 86, 692e716.
    • Knaepkens, G., Knapen, D., Bervoets, L., Ha€nfling, B., Verheyen, E., & Eens, M. (2002). Genetic diversity and condition factor: a significant relationship in Flemish but not in German populations of the European bullhead (Cottus gobio L. Heredity, 89, 280e287.
    • Law, G., Nager, R., Laurie, J., Kirk, A., McLachlan, K., Adam, G., et al. (2010). Aspects of the design of a new birdhouse at the University of Glasgow's Faculty of Biomedical and Life Sciences. Animal Technology and Welfare, 9, 25e30.
    • Lessells, C. M., & Boag, P. T. (1987). Unrepeatable repeatabilities: a common mistake. Auk, 104, 116e121.
    • Margulis, S. W. (1998). Relationships among parental inbreeding, parental behaviour and offspring viability in oldfield mice. Animal Behaviour, 55, 427e438.
    • Margulis, S., & Altmann, J. (1997). Behavioural risk factors in the reproduction of inbred and outbred oldfield mice. Animal Behaviour, 54, 397e408.
    • Marr, A. B., Arcese, P., Hochachka, W. M., Reid, J. M., & Keller, L. F. (2006). Interactive effects of environmental stress and inbreeding on reproductive traits in a wild bird population. Journal of Animal Ecology, 75, 1406e1415.
    • Martin, P., & Bateson, P. (2007). Measuring behaviour: An introductory guide. Cambridge, U.K.: Cambridge University Press.
    • Mattey, S. N., Strutt, L., & Smiseth, T. (2013). Intergenerational effects of inbreeding in Nicrophorus vespilloides: offspring suffer fitness costs when either they or their parents are inbred. Journal of Evolutionary Biology, 26, 843e853.
    • Merila€, J., & Sheldon, B. C. (1999). Genetic architecture of fitness and nonfitness traits: empirical patterns and development of ideas. Heredity, 83, 103e109.
    • Moura, A., Polastre, R., & Wechsler, F. (2000). Dam and litter inbreeding and environmental effects on litter performance in Botucatu rabbits. World Rabbit Science, 8, 151e157.
    • Mrowka, W. (1982). Effect of removal of the mate on the parental care behaviour of the biparental cichlid Aequidens paraguayensis. Animal Behaviour, 30, 295e297.
    • Naguib, M., & Gil, D. (2005). Transgenerational effects on body size caused by early developmental stress in zebra finches. Biology Letters, 1, 95e97.
    • Nakagawa, S., & Cuthill, I. C. (2007). Effect size, confidence interval and statistical significance: a practical guide for biologists. Biological Reviews, 82, 591e605.
    • O'Brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality & Quantity, 41, 673e690.
    • Osorno, J. L., & Szekely, T. (2004). Sexual conflict and parental care in magnificent frigatebirds: full compensation by deserted females. Animal Behaviour, 68, 337e342.
    • Perfito, N., Zann, R. A., Bentley, G. E., & Hau, M. (2007). Opportunism at work: habitat predictability affects reproductive readiness in free-living zebra finches. Functional Ecology, 21, 291e301.
    • Pooley, E. L. (2013). Egg production and maternal heterozygosity (Unpublished doctoral dissertation). Glasgow, U.K.: University of Glasgow.
    • Pulkkinen, T. I., Van Der Lende, T., Groen, A. F., Kaal, L. M. T. E., & Zonderland, J. J. (1998). The effect of inbreeding on components of dairy cattle fertility as calculated from non-return data, using a multiphasic logistic function. In Proceedings of the International Workshop on Genetic Improvement of Functional Traits in Cattle: Fertility and reproduction (Vol. 18, pp. 74e77).
    • R Core Development Team. (2008). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
    • Reid, J. M., Monaghan, P., & Nager, R. G. (2002). Incubation and the costs of reproduction. In D. C. Deeming (Ed.), Avian incubation: Behaviour, environment and evolution (pp. 314e325). Oxford, U.K.: Oxford University Press.
    • Richardson, D. S., Komdeur, J., & Burke, T. (2004). Inbreeding in the Seychelles warbler: environment-dependent maternal effects. Evolution, 58, 2037e2048.
    • Saccheri, I., Kuussaari, M., Kankare, M., Vikman, P., & Hanski, I. (1998). Inbreeding and extinction in a butterfly metapopulation. Nature, 392, 491e494.
    • Sanz, J., Kranenbarg, S., & Tinbergen, J. (2000). Differential response by males and females of partner in the great tit manipulation contribution in the greta tit (Parus major). Journal of Animal Ecology, 69, 74e84.
    • Sewalem, A., Johansson, K., Wilhelmson, M., & Lillpers, K. (1999). Inbreeding and inbreeding depression on reproduction and production values of white leghorn lines selected for egg production traits. British Poultry Science, 40, 203e208.
    • Sittmann, K., Abplanalp, H., & Fraser, R. A. (1966). Inbreeding depression in Japanese quail. Genetics, 54, 371e379.
    • Slate, J., Kruuk, L. E. B., Marshall, T. C., Pemberton, J. M., & Clutton-Brock, T. H. (2000). Inbreeding depression influences lifetime breeding success in a wild population of red deer (Cervus elaphus). Proceedings of the Royal Society B: Biological Sciences, 267, 1657e1662.
    • Su, G.-S., Liljedahl, L.-E., & Gall, G. A. E. (1996). Effects of inbreeding on growth and reproductive traits in rainbow trout (Oncorhynchus mykiss). Aquaculture, 142, 139e148.
    • Szulkin, M., Garant, D., McCleery, R. H., & Sheldon, B. C. (2007). Inbreeding depression along a life-history continuum in the great tit. Journal of Evolutionary Biology, 20, 1531e1543.
    • Tinbergen, J. M., & Williams, J. B. (2002). Energetics of incubation. In D. C. Deeming (Ed.), Avian incubation: Behaviour, environment and evolution (pp. 299e313). Oxford, U.K.: Oxford University Press.
    • Tschirren, B., Rutstein, A. N., Postma, E., Mariette, M., & Griffith, S. C. (2009). Short- and long-term consequences of early developmental conditions: a case study on wild and domesticated zebra finches. Journal of Evolutionary Biology, 22, 387e395.
    • Turner, J. S. (2002). Maintenance of egg temperature. In D. C. Deeming (Ed.), Avian incubation: Behaviour, environment and evolution (pp. 119e142). Oxford, U.K.: Oxford University Press.
    • van Noordwijk, A. J., & Scharloo, W. (1981). Inbreeding in an island population of the great tit. Evolution, 35, 674e688.
    • Webb, D. R. (1987). Thermal tolerance of avian embryos: a review. Condor, 89, 874e898.
    • Wetzel, D. P., Stewart, I. R. K., & Westneat, D. F. (2012). Heterozygosity predicts clutch and egg size but not plasticity in a house sparrow population with no evidence of inbreeding. Molecular Ecology, 21, 406e420.
    • Williams, T. D. (1994). Intraspecific variation in egg size and egg composition in birds. Biological Reviews, 69, 35e59.
    • Williamson, K., Gilbert, L., Rutstein, A. N., Pariser, E. C., & Graves, J. A. (2008). Within-year differences in reproductive investment in laboratory zebra finches Taeniopygia guttata, an opportunistically breeding bird. Naturwissenschaften, 95, 1143e1148.
    • Zann, R. (1996). The zebra finch: A synthesis of field and laboratory studies. Oxford, U.K.: Oxford University Press.
    • Zann, R., & Rossetto, M. (1991). Zebra finch incubation: brood patch, egg temperature and thermal properties of the nest. Emu, 91, 107e120.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

Cite this article