LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Collins, Fraser
Languages: English
Types: Doctoral thesis
Subjects: R1

Classified by OpenAIRE into

mesheuropmc: musculoskeletal diseases
Death receptor 3 (DR3) is a member of the TNFRSF and has one confirmed TNFSF ligand -\ud TNF-like protein 1A (TL1A). Recent studies have suggested a role for DR3/TL1A in\ud osteoclast (OC) and osteoblast (OB) biology. However, the mechanism through which\ud they acted and the consequences in diseases characterised by adverse bone pathology\ud were not investigated. This thesis investigated the role of DR3/TL1A in OC formation and\ud resorptive function (murine and human), diseases characterised by OC hyper-activity and\ud homeostatic OB differentiation and function (murine) using cell culture and molecular\ud biology techniques.\ud DR3/TL1A were demonstrated for the first time to have a direct effect on in vitro OC\ud formation and resorptive function in both murine and human models. DR3 was revealed\ud to be critical for OC resorptive function (murine) while TL1A dose-dependently increased\ud osteoclastogenesis and resorptive function in the human system. Studies into the\ud mechanism identified that DR3/TL1A regulated expression of the chemokines CCL2 and\ud CCL3 as well as the activation of MMP-9. In rheumatoid arthritis patient serum TL1A was\ud significantly increased, with levels linked to the presence of rheumatoid factor and erosive\ud disease. Intriguingly, DR3/TL1A were shown to have no direct significant role in the\ud increased OC activity associated with post-menopausal osteoporosis; DR3 was not\ud detected on patient-derived OC precursors and serum levels of TL1A were not elevated.\ud Analysis of murine osteoprogenitors and OB revealed expression of DR3 and TL1A and\ud suggested a novel autocrine role in OB differentiation. This was supported by the OB\ud mineralisation assay results which demonstrated reduced differentiation, MMP-2 and\ud MMP-9 activation and mineral deposition in DR3ko cultures.\ud The results presented in this thesis identify a novel, complex and multi-factorial role for\ud DR3/TL1A in controlling OC and OB differentiation and function; imbalances in which can\ud lead to the pathogenesis of adverse bone pathology.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 106. Tezuka K, Nemoto K, Tezuka Y, Sato T, Ikeda Y, Kobori M, et al. IDENTIFICATION OF MATRIX METALLOPROTEINASE-9 IN RABBIT OSTEOCLASTS. Journal of Biological Chemistry. [Article]. 1994 May;269(21):15006-9.
    • 107. Mulari MTK, Zhao H, Lakkakorpi PT, Vaananen HK. Osteoclast ruffled border has distinct subdomains for secretion and degraded matrix uptake. Traffic. [Article]. 2003 Feb;4(2):113-25.
    • 108. Salo J, Lehenkari P, Mulari M, Metsikko K, Vaananen HK. Removal of osteoclast bone resorption products by transcytosis. Science. [Article]. 1997 Apr;276(5310):270-3.
    • 109. Halleen JM, Raisanen S, Salo JJ, Reddy SV, Roodman GD, Hentunen TA, et al. Intracellular fragmentation of bone resorption products by reactive oxygen species generated by osteoclastic tartrate-resistant acid phosphatase. Journal of Biological Chemistry. [Article]. 1999 Aug;274(33):22907-10.
    • 110. Hayman AR, Jones SJ, Boyde A, Foster D, Colledge WH, Carlton MB, et al. Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis. Development. [Article]. 1996 Oct;122(10):3151-62.
    • 111. Zhao C, Irie N, Takada Y, Shimoda K, Miyamoto T, Nishiwaki T, et al. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metabolism. 2006 Aug;4(2):111-21.
    • 112. Mundy GR, Elefteriou F. Boning up on ephrin signaling. Cell. 2006 Aug;126(3):441- 3.
    • 113. Nagase H, Woessner JF. Matrix metalloproteinases. Journal of Biological Chemistry. [Review]. 1999 Jul;274(31):21491-4.
    • 114. Krane SM, Inada M. Matrix metalloproteinases and bone. Bone. [Review]. 2008 Jul;43(1):7-18.
    • 115. Andersen TL, Ovejero MD, Kirkegaard T, Lenhard T, Foged NT, Delaisse JM. A scrutiny of matrix metalloproteinases in osteoclasts: evidence for heterogeneity and for the presence of MMPs synthesized by other cells. Bone. 2004 Nov;35(5):1107-19.
    • 116. Blavier L, Delaisse JM. MATRIX METALLOPROTEINASES ARE OBLIGATORY FOR THE MIGRATION OF PREOSTEOCLASTS TO THE DEVELOPING MARROW CAVITY OF PRIMITIVE LONG BONES. J Cell Sci. [Article]. 1995 Dec;108:3649-59.
    • 117. Reponen P, Sahlberg C, Munaut C, Thesleff I, Tryggvason K. HIGH EXPRESSION OF 92-KDA TYPE-IV COLLAGENASE (GELATINASE) IN THE OSTEOCLAST LINEAGE DURING MOUSE DEVELOPMENT. In: Greenwald RA, Golub LM, editors. Inhibition of Matrix Metalloproteinases: Therapeutic Potential. New York: New York Acad Sciences; 1994. p. 472-5.
    • 118. Everts V, Delaisse JM, Korper W, Beertsen W. Cysteine proteinases and matrix metalloproteinases play distinct roles in the subosteoclastic resorption zone. Journal of Bone and Mineral Research. [Proceedings Paper]. 1998 Sep;13(9):1420-30.
    • 119. Everts V, Beertsen W, Schroder R. EFFECTS OF THE PROTEINASE-INHIBITORS LEUPEPTIN AND E-64 ON OSTEOCLASTIC BONE-RESORPTION. Calcif Tissue Int. [Article]. 1988 Sep;43(3):172-8.
    • 120. Chen QJ LL, Lenhard T, Engsig M, Winding B, Therkildsen B, Pedersen AC, Larsen D, Werb Z, Foged NT, Delaisse JM. MMP-9 is a regulator of osteoclast recruitment as demonstrated by targeted mutagenesis. Bone. 1998;23:S548.
    • 121. Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D, et al. MMP9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell. [Article]. 1998 May;93(3):411-22.
    • 122. Cackowski FC, Anderson JL, Patrene KD, Choksi RJ, Shapiro SD, Windle JJ, et al. Osteoclasts are important for bone angiogenesis. Blood. 2010 Jan;115(1):140-9.
    • 123. Sato T, Foged NT, Delaisse JM. The migration of purified osteoclasts through collagen is inhibited by matrix metalloproteinase inhibitors. Journal of Bone and Mineral Research. [Article]. 1998 Jan;13(1):59-66.
    • 124. Delaisse JM, Engsig MT, Everts V, Ovejero MD, Ferreras M, Lund L, et al. Proteinases in bone resorption: obvious and less obvious roles. Clin Chim Acta. [Article]. 2000 Feb;291(2):223-34.
    • 125. Rice DPC, Kim HJ, Thesleff I. Detection of gelatinase B expression reveals osteoclastic bone resorption as a feature of early calvarial bone development. Bone. [Article]. 1997 Dec;21(6):479-86.
    • 126. Kamiya T, Kobayashi Y, Kanaoka K, Nakashima T, Kato Y, Mizuno A, et al. Fluorescence microscopic demonstration of cathepsin K activity as the major lysosomal cysteine proteinase in osteoclasts. Journal of Biochemistry. 1998 Apr;123(4):752-9.
    • 127. Delaisse JM, Andersen TL, Engsig MT, Henriksen K, Troen T, Blavier L. Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities. Microscopy Research and Technique. 2003 Aug;61(6):504-13.
    • 128. Gelb BD, Shi GP, Chapman HA, Desnick RJ. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. [Article]. 1996 Aug;273(5279):1236-8.
    • 129. Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, et al. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci U S A. 1998 Nov;95(23):13453-8.
    • 130. Aubin JE. Advances in the osteoblast lineage. Biochemistry and Cell BiologyBiochimie Et Biologie Cellulaire. 1998;76(6):899-910.
    • 131. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999 Apr;284(5411):143-7.
    • 132. Jiang YH, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002 Jul;418(6893):41-9.
    • 133. Gronthos S, Graves SE, Ohta S, Simmons PJ. THE STRO-1(+) FRACTION OF ADULT HUMAN BONE-MARROW CONTAINS THE OSTEOGENIC PRECURSORS. Blood. 1994 Dec;84(12):4164-73.
    • 134. Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood. [Article]. 2004 Mar;103(5):1662-8.
    • 135. Harada S-i, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature. 2003;423(6937):349-55.
    • 136. Aubin JE, Lian JB, Stein GS. Bone Formation: Maturation and Functional Activities of Osteoblast Lineage Cells. 6th ed. Washington D.C: American Society for Bone and Mineral Research; 2006.
    • 137. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell. 1997 May;89(5):747-54.
    • 138. Nakashima K, Zhou X, Kunkel G, Zhang ZP, Deng JM, Behringer RR, et al. The novel zinc finger-containing transcription factor Osterix is required for osteoblast differentiation and bone formation. Cell. 2002 Jan;108(1):17-29.
    • 139. Yang XG, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke T, et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology: Implication for CoffinLowry syndrome. Cell. 2004 Apr;117(3):387-98.
    • 140. Schoeters GER, Saint‐Georges L, Heuvel R, Vanderborght O. Mineralization of adult mouse bone marrow in vitro. Cell Proliferation. 1988;21(5):363-74.
    • 141. Franceschi RT, Iyer BS, Cui Y. Effects of ascorbic acid on collagen matrix formation and osteoblast differentiation in murine MC3T3‐E1 cells. Journal of Bone and Mineral Research. 2009;9(6):843-54.
    • 142. Buttery LDK, Bourne S, Xynos JD, Wood H, Hughes FJ, Hughes SPF, et al. Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells. Tissue engineering. 2001;7(1):89-99.
    • 143. Igarashi M, Kamiya N, Hasegawa M, Kasuya T, Takahashi T, Takagi M. Inductive effects of dexamethasone on the gene expression of Cbfa1, Osterix and bone matrix proteins during differentiation of cultured primary rat osteoblasts. Journal of molecular histology. 2004;35(1):3-10.
    • 144. Beresford JN, Joyner CJ, Devlin C, Triffitt JT. The effects of dexamethasone and 1, 25-dihydroxyvitamin D< sub> 3 on osteogenic differentiation of human marrow stromal cells< i> in vitro. Arch Oral Biol. 1994;39(11):941-7.
    • 145. Boyden LM, Mao JH, Belsky J, Mitzner L, Farhi A, Mitnick MA, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med. 2002 May;346(20):1513-21.
    • 146. Little RD, Carulli JP, Del Mastro RG, Dupuis J, Osborne M, Folz C, et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bonemass trait. American Journal of Human Genetics. 2002 Jan;70(1):11-9.
    • 147. Gong YQ, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001 Nov;107(4):513-23.
    • 148. Hill TP, Spater D, Taketo MM, Birchmeier W, Hartmann C. Canonical Wnt/betacatenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell. 2005 May;8(5):727-38.
    • 149. Day TF, Guo XZ, Garrett-Beal L, Yang YZ. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell. 2005 May;8(5):739-50.
    • 150. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annual Review of Cell and Developmental Biology. 2004;20:781-810.
    • 151. ten Dijke P, Fu JY, Schaap P, Roelen BAJ. Signal transduction of bone morphogenetic proteins in osteoblast differentiation. J Bone Joint Surg-Am Vol. [Article; Proceedings Paper]. 2003;85A:34-8.
    • 152. Canalis E, Economides AN, Gazzerro E. Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev. 2003 Apr;24(2):218-35.
    • 153. Winnier G, Blessing M, Labosky PA, Hogan BLM. BONE MORPHOGENETIC PROTEIN-4 IS REQUIRED FOR MESODERM FORMATION AND PATTERNING IN THE MOUSE. Genes & Development. 1995 Sep;9(17):2105-16.
    • 154. Zhang HB, Bradley A. Mice deficient for BMP2 are nonviable and have defects in amnion chorion and cardiac development. Development. 1996 Oct;122(10):2977-86.
    • 155. Akiyama H, Kim J-E, Nakashima K, Balmes G, Iwai N, Deng JM, et al. Osteochondroprogenitor cells are derived from Sox9 expressing precursors. Proc Natl Acad Sci U S A. 2005;102(41):14665-70.
    • 156. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997 May;89(5):755-64.
    • 157. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, et al. < i> Cbfa1, a Candidate Gene for Cleidocranial Dysplasia Syndrome, Is Essential for Osteoblast Differentiation and Bone Development. Cell. 1997;89(5):765-71.
    • 158. Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS, Albright S, et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell. 1997;89(5):773-9.
    • 159. Ducy P, Starbuck M, Priemel M, Shen J, Pinero G, Geoffroy V, et al. A Cbfa1- dependent genetic pathway controls bone formation beyond embryonic development. Genes & development. 1999;13(8):1025-36.
    • 160. Zhou X, Zhang Z, Feng JQ, Dusevich VM, Sinha K, Zhang H, et al. Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice. Proceedings of the National Academy of Sciences. 2010;107(29):12919-24.
    • 161. Robey PG, Boskey AL. The Composition of Bone. 7th ed. Rosen CJ, editor. Washington D.C: American Society for Bone and Mineral Research; 2008.
    • 162. Robey PG, Boskey AL. Extracellular Matrix and Biomineralization of Bone. 6th ed. Washington D.C: American Society of Bone and Mineral Research; 2006.
    • 163. Termine JD, Kleinman HK, Whitson SW, Conn KM, McGarvey ML, Martin GR. Osteonectin, a bone-specific protein linking mineral to collagen. Cell. 1981;26(1):99-105.
    • 164. Anderson HC, Sipe JB, Hessle L, Dhamyamraju R, Atti E, Camacho NP, et al. Impaired calcification around matrix vesicles of growth plate and bone in alkaline phosphatase-deficient mice. The American journal of pathology. 2004;164(3):841-7.
    • 165. Onodera S, Nishihira J, Iwabuchi K, Koyama Y, Yoshida K, Tanaka S, et al. Macrophage migration inhibitory factor up-regulates matrix metalloproteinase-9 and-13 in rat osteoblasts - Relevance to intracellular signaling pathways. Journal of Biological Chemistry. 2002 Mar;277(10):7865-74.
    • 166. Filanti C, Dickson GR, Di Martino D, Ulivi V, Sanguineti C, Romano P, et al. The expression of metalloproteinase-2,-9, and-14 and of tissue inhibitors-1 and-2 is developmentally modulated during osteogenesis in vitro, the mature osteoblastic phenotype expressing metalloproteinase-14. Journal of Bone and Mineral Research. 2000 Nov;15(11):2154-68.
    • 167. (US). OotSG. Diseases of the Bone. In: General OotS, editor. Bone Health and Osteoporosis: A Report of the Surgeon General. Rockville: Office of the Surgeon General (US); 2004.
    • 168. Moll JMH, Wright V. Psoriatic arthritis. Seminars in arthritis and rheumatism,. 1973;vol. 3,(no. 1,):pp. 55-78.
    • 169. Khan MA. Update on spondyloarthropathies. Annals of Internal Medicine. 2002 Jun;136(12):896-907.
    • 170. Feldmann M, Brennan FM, Maini RN. Rheumatoid arthritis. Cell. 1996 May;85(3):307-10.
    • 171. Scrivo R, Di Franco M, Spadaro A, Valesini G. The immunology of rheumatoid arthritis. In: Shoenfeld Y, Gershwin ME, editors. Autoimmunity, Pt D: Autoimmune Disease, Annus Mirabilis2007. p. 312-22.
    • 172. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO, et al. 2010 Rheumatoid Arthritis Classification Criteria An American College of Rheumatology/European League Against Rheumatism Collaborative Initiative. Arthritis Rheum. 2010 Sep;62(9):2569-81.
    • 173. Feldmann M, Brennan FM, Maini RN. Role of cytokines in rheumatoid arthritis. Annual Review of Immunology. 1996;14:397-440.
    • 174. McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol. 2007 Jun;7(6):429-42.
    • 175. Buchan G, Barrett K, Turner M, Chantry D, Maini RN, Feldmann M. INTERLEUKIN-1 AND TUMOR NECROSIS FACTOR MESSENGER-RNA EXPRESSION IN RHEUMATOIDARTHRITIS - PROLONGED PRODUCTION OF IL-1-ALPHA. Clinical and Experimental Immunology. 1988 Sep;73(3):449-55.
    • 176. Brennan FM, Chantry D, Jackson AM, Maini RN, Feldmann M. CYTOKINE PRODUCTION IN CULTURE BY CELLS ISOLATED FROM THE SYNOVIAL-MEMBRANE. Journal of Autoimmunity. 1989 Jun;2:177-86.
    • 177. Brennan FM, Jackson A, Chantry D, Maini R, Feldmann M. INHIBITORY EFFECT OF TNF-ALPHA ANTIBODIES ON SYNOVIAL CELL INTERLEUKIN-1 PRODUCTION IN RHEUMATOID-ARTHRITIS. Lancet. 1989 Jul;2(8657):244-7.
    • 178. Butler DM, Maini RN, Feldmann M, Brennan FM. Modulation of proinflammatory cytokine release in rheumatoid synovial membrane cell cultures. Comparison of monoclonal anti TNF-alpha antibody with the interleukin-1 receptor antagonist. European Cytokine Network. 1995 Jul-Dec;6(4):225-30.
    • 179. Alvarogracia JM, Zvaifler NJ, Brown CB, Kaushansky K, Firestein GS. CYTOKINES IN CHRONIC INFLAMMATORY ARTHRITIS .6. ANALYSIS OF THE SYNOVIAL-CELLS INVOLVED IN GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR PRODUCTION AND GENEEXPRESSION IN RHEUMATOID-ARTHRITIS AND ITS REGULATION BY IL-1 AND TUMORNECROSIS-FACTOR-ALPHA. J Immunol. 1991 May;146(10):3365-71.
    • 180. Crotti TN, Smith MD, Weedon H, Ahern MJ, Findlay DM, Kraan M, et al. Receptor activator NF-kappa B ligand (RANKL) expression in synovial tissue from patients with rheumatoid arthritis, spondyloarthropathy, osteoarthritis, and from normal patients: semiquantitative and quantitative analysis. Ann Rheum Dis. [Article]. 2002 Dec;61(12):1047-54.
    • 181. Saxne T, Palladino MA, Heinegard D, Talal N, Wollheim FA. DETECTION OF TUMOR NECROSIS FACTOR-ALPHA BUT NOT TUMOR NECROSIS FACTOR-BETA IN RHEUMATOIDARTHRITIS SYNOVIAL-FLUID AND SERUM. Arthritis Rheum. 1988 Aug;31(8):1041-5.
    • 182. Edwards JR, Sun SG, Locklin R, Shipman CM, Adamopoulos IE, Athanasou NA, et al. LIGHT (TNFSF14), a novel mediator of bone resorption, is elevated in rheumatoid arthritis. Arthritis Rheum. [Article]. 2006 May;54(5):1451-62.
    • 183. Kang YM, Kim SY, Kang JH, Han SW, Nam EJ, Kyung HS, et al. LIGHT up-regulated on B lymphocytes and monocytes in rheumatoid arthritis mediates cellular adhesion and metalloproteinase production by synoviocytes. Arthritis Rheum. [Article]. 2007 Apr;56(4):1106-17.
    • 184. Thomson BM, Mundy GR, Chambers TJ. TUMOR NECROSIS FACTORS-ALPHA AND FACTORS-BETA INDUCE OSTEOBLASTIC CELLS TO STIMULATE OSTEOCLASTIC BONERESORPTION. J Immunol. 1987 Feb;138(3):775-9.
    • 185. Kudo O, Fujikawa Y, Itonaga I, Sabokbar A, Torisu T, Athanasou NA. Proinflammatory cytokine (TNF alpha/IL-1 alpha) induction of human osteoclast formation. Journal of Pathology. 2002 Oct;198(2):220-7.
    • 186. Smolen JS, Aletaha D, Koeller M, Weisman MH, Emery P. New therapies for treatment of rheumatoid arthritis. Lancet. 2007 Dec;370(9602):1861-74.
    • 187. Consensus conference: Osteoporosis. JAMA : the journal of the American Medical Association. 1984 1984 Aug;252(6):799-802.
    • 188. Cooper C, Atkinson EJ, Ofallon WM, Melton LJ. INCIDENCE OF CLINICALLY DIAGNOSED VERTEBRAL FRACTURES - A POPULATION-BASED STUDY IN ROCHESTER, MINNESOTA, 1985-1989. Journal of Bone and Mineral Research. [Article]. 1992 Feb;7(2):221-7.
    • 189. Melton LJ, Chrischilles EA, Cooper C, Lane AW, Riggs BL. HOW MANY WOMEN HAVE OSTEOPOROSIS. Journal of Bone and Mineral Research. [Article]. 1992 Sep;7(9):1005-10.
    • 190. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. Journal of Bone and Mineral Research. [Article]. 2007 Mar;22(3):465-75.
    • 208. Papapoulos SE. Bisphosphonates: how do they work? Best Practice & Research Clinical Endocrinology & Metabolism. 2008 Oct;22(5):831-47.
    • 209. Rosen CJ, Rackoff PJ. Emerging anabolic treatments for osteoporosis. Rheum Dis Clin North Am. 2001 Feb;27(1):215-+.
    • 210. Marie PJ. Strontium ranelate: New insights into its dual mode of action. Bone. 2007 May;40(5):S5-S8.
    • 211. Schwarz EM, Ritchlin CT. Clinical development of anti-RANKL therapy. Arthritis Research & Therapy. 2007;9.
    • 212. McClung MR, Lewiecki EM, Cohen SB, Bolognese MA, Woodson GC, Moffett AH, et al. Denosumab in postmenopausal women with low bone mineral density. N Engl J Med. 2006 Feb;354(8):821-31.
    • 213. O'Malley WE, Achinstein B, Shear MJ. Action of bacterial polysaccharide on tumors. II. Damage of sarcoma 37 by serum of mice treated with Serratia marcescens polysaccharide, and induced tolerance. Journal of the National Cancer Institute. 1962;29(6):1169-75.
    • 214. Carswell EA, Old LJ, Kassel R, Green S, Fiore N, Williamson B. An endotoxininduced serum factor that causes necrosis of tumors. Proceedings of the National Academy of Sciences. 1975;72(9):3666-70.
    • 215. Williams TW, Granger GA. Lymphocyte in vitro cytotoxicity: lymphotoxins of several mammalian species. 1968.
    • 216. Aggarwal BB, Moffat B, Harkins RN. Human lymphotoxin. Production by a lymphoblastoid cell line, purification, and initial characterization. Journal of Biological Chemistry. 1984;259(1):686-91.
    • 217. Aggarwal BB, Kohr WJ, Hass PE, Moffat B, Spencer SA, Henzel WJ, et al. Human tumor necrosis factor. Production, purification, and characterization. Journal of Biological Chemistry. 1985;260(4):2345-54.
    • 218. Bodmer JL, Schneider P, Tschopp J. The molecular architecture of the TNF superfamily. Trends in Biochemical Sciences. 2002 Jan;27(1):19-26.
    • 219. Aggarwal BB. Signalling pathways of the TNF superfamily: A double-edged sword. Nat Rev Immunol. 2003 Sep;3(9):745-56.
    • 220. MacEwan DJ. TNF ligands and receptors-a matter of life and death. British journal of pharmacology. 2009;135(4):855-75.
    • 221. Bossen C, Ingold K, Tardivel A, Bodmer JL, Gaide O, Hertig S, et al. Interactions of tumor necrosis factor (TNF) and TNF receptor family members in the mouse and human. Journal of Biological Chemistry. 2006 May;281(20):13964-71.
    • 222. Dempsey PW, Doyle SE, He JQ, Cheng G. The signaling adaptors and pathways activated by TNF superfamily. Cytokine Growth Factor Rev. 2003;14(3):193-209.
    • 223. Lavrik I, Golks A, Krammer PH. Death receptor signaling. J Cell Sci. 2005;118(2):265-7.
    • 224. Mackay F, Kalled SL. TNF ligands and receptors in autoimmunity: an update. Curr Opin Immunol. 2002;14(6):783.
    • 225. Hsu HL, Huang JN, Shu HB, Baichwal V, Goeddel DV. TNF-Dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity. 1996 Apr;4(4):387-96.
    • 226. Chinnaiyan AM, Orourke K, Tewari M, Dixit VM. FADD, A NOVEL DEATH DOMAINCONTAINING PROTEIN, INTERACTS WITH THE DEATH DOMAIN OF FAS AND INITIATES APOPTOSIS. Cell. 1995 May;81(4):505-12.
    • 227. Hsu HL, Xiong J, Goeddel DV. THE TNF RECEPTOR 1-ASSOCIATED PROTEIN TRADD SIGNALS CELL-DEATH AND NF-KAPPA-B ACTIVATION. Cell. 1995 May;81(4):495-504.
    • 228. Stanger BZ, Leder P, Lee TH, Kim E, Seed B. RIP - A NOVEL PROTEIN CONTAINING A DEATH DOMAIN THAT INTERACTS WITH FAS/APO-1 (CD95) IN YEAST AND CAUSES CELLDEATH. Cell. 1995 May;81(4):513-23.
    • 229. Kitson J, Raven T, Jiang YP, Goeddel DV, Giles KM, Pun KT, et al. A death-domaincontaining receptor that mediates apoptosis. Nature. [Article]. 1996 Nov;384(6607):372-5.
    • 230. Screaton GR, Xu XN, Olsen AL, Cowper AE, Tan RS, McMichael AJ, et al. LARD: A new lymphoid-specific death domain containing receptor regulated by alternative premRNA splicing. Proc Natl Acad Sci U S A. [Article]. 1997 Apr;94(9):4615-9.
    • 231. Marsters SA, Sheridan JP, Donahue CJ, Pitti RM, Gray CL, Goddard AD, et al. Apo-3, a new member of the tumor necrosis factor receptor family, contains a death domain and activates apoptosis and NF-kappa B. Curr Biol. [Article]. 1996 Dec;6(12):1669-76.
    • 232. Chinnaiyan AM, Orourke K, Yu GL, Lyons RH, Garg M, Duan DR, et al. Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science. [Article]. 1996 Nov;274(5289):990-2.
    • 233. Bodmer JL, Burns K, Schneider P, Hofmann K, Steiner V, Thome M, et al. TRAMP, a novel apoptosis-mediating receptor with sequence homology to tumor necrosis factor receptor 1 and Fas(Apo-1/CD95). Immunity. [Article]. 1997 Jan;6(1):79-88.
    • 234. Wang ECY, Kitson J, Thern A, Williamson J, Farrow SN, Owen MJ. Genomic structure, expression, and chromosome mapping of the mouse homologue for the WSL-1 (DR3, Apo3, TRAMP, LARD, TR3, TNFRSF12) gene. Immunogenetics. [Article]. 2001 Feb;53(1):59-63.
    • 235. Tan KB, Harrop J, Reddy M, Young P, Terrett J, Emery J, et al. Characterization of a novel TNF-like ligand and recently described TNF ligand and TNF receptor superfamily genes and their constitutive and inducible expression in hematopoietic and nonhematopoietic cells. Gene. [Article]. 1997 Dec;204(1-2):35-46.
    • 236. Jones GW, Stumhofer JS, Foster T, Twohig JP, Hertzog P, Topley N, et al. Naive and activated T cells display differential responsiveness to TL1A that affects Th17 generation, maintenance, and proliferation. Faseb Journal. 2011 Jan;25(1):409-19.
    • 237. Fang L, Adkins B, Deyev V, Podack ER. Essential role of TNF receptor superfamily 25 (TNFRSF25) in the development of allergic lung inflammation. J Exp Med. [Article]. 2008 May;205(5):1037-48.
    • 238. Park MH, Song MJ, Cho MC, Moon DC, Yoon DY, Han SB, et al. Interleukin-32 enhances cytotoxic effect of natural killer cells to cancer cells via activation of death receptor 3. Immunology. 2012 Jan;135(1):63-72.
    • 239. Kim SH, Lee WH, Kwon BS, Oh GT, Choi YH, Park JE. Tumor necrosis factor receptor superfamily 12 may destabilize atherosclerotic plaques by inducing matrix metalloproteinases. Jpn Circ J-Engl Ed. [Article]. 2001 Feb;65(2):136-8.
    • 240. Su WB, Chang YH, Lin WW, Hsieh SL. Differential regulation of interleukin-8 gene transcription by death receptor 3 (DR3) and type I TNF receptor (TNFRI). Exp Cell Res. [Article]. 2006 Feb;312(3):266-77.
    • 241. Borysenko CW, Garcia-Palacios V, Griswold RD, Li YN, Iyer AKV, Yaroslavskiy BB, et al. Death receptor-3 mediates apoptosis in human osteoblasts under narrowly regulated conditions. J Cell Physiol. [Article]. 2006 Dec;209(3):1021-8.
    • 242. Bull MJ, Williams AS, Mecklenburgh Z, Calder CJ, Twohig JP, Elford C, et al. The Death Receptor 3-TNF-like protein 1A pathway drives adverse bone pathology in inflammatory arthritis. J Exp Med. [Article]. 2008 Oct;205(11):2457-64.
    • 243. Twohig JP, Marsden M, Cuff SM, Ferdinand JR, Gallimore AM, Perks WV, et al. The death receptor 3/TL1A pathway is essential for efficient development of antiviral CD4(+) and CD8(+) T-cell immunity. Faseb Journal. 2012 Aug;26(8):3575-86.
    • 244. Warzocha K, Ribeiro P, Charlot C, Renard N, Coiffier B, Salles G. A new death receptor 3 isoform: Expression in human lymphoid cell lines and non-Hodgkin's lymphomas. Biochemical and Biophysical Research Communications. 1998 Jan;242(2):376- 9.
    • 245. Pobezinskaya YL, Choksi S, Morgan MJ, Cao XM, Liu ZG. The Adaptor Protein TRADD Is Essential for TNF-Like Ligand 1A/Death Receptor 3 Signaling. J Immunol. 2011 May;186(9):5212-6.
    • 246. Wen L, Zhuang L, Luo X, Wei P. TL1A-induced NF-kappa B activation and c-IAP2 production prevent DR3-mediated apoptosis in TF-1 cells. Journal of Biological Chemistry. [Article]. 2003 Oct;278(40):39251-8.
    • 247. Marsters SA, Sheridan JP, Pitti RM, Brush J, Goddard A, Ashkenazi A. Identification of a ligand for the death-domain-containing receptor Apo3. Curr Biol. [Article]. 1998 Apr;8(9):525-8.
    • 248. Migone TS, Zhang J, Luo X, Zhuang L, Chen C, Hu BG, et al. TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator. Immunity. [Article]. 2002 Mar;16(3):479-92.
    • 249. Gout S, Morin C, Houle F, Huot J. Death receptor-3, a new E-selectin counterreceptor that confers migration and survival advantages to colon carcinoma cells by triggering p38 and ERK MAPK activation. Cancer Research. 2006 Sep;66(18):9117-24.
    • 250. Chicheportiche Y, Bourdon PR, Xu HD, Hsu YM, Scott H, Hession C, et al. TWEAK, a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis. Journal of Biological Chemistry. 1997 Dec;272(51):32401-10.
    • 251. Kaptein A, Jansen M, Dilaver G, Kitson J, Dash L, Wang E, et al. Studies on the interaction between TWEAK and the death receptor WSL-1/TRAMP (DR3). FEBS Lett. [Article]. 2000 Nov;485(2-3):135-41.
    • 252. Kim S, Zhang LR. Identification of naturally secreted soluble form of TL1A, a TNFlike cytokine. Journal of Immunological Methods. 2005 Mar;298(1-2):1-8.
    • 253. Prehn JL, Thomas LS, Landers CJ, Yu QT, Michelsen KS, Targan SR. The T cell costimulator TL1A is induced by Fc gamma R signaling in human monocytes and dendritic cells. J Immunol. [Article]. 2007 Apr;178(7):4033-8.
    • 254. Bamias G, Martin C, Marini M, Hoang S, Mishina M, Ross WG, et al. Expression, localization, and functional activity of TL1A, a novel Th1-polarizing cytokine in inflammatory bowel disease. J Immunol. 2003 Nov;171(9):4868-74.
    • 255. Bamias G, Mishina M, Nyce M, Ross WG, Kollias G, Rivera-Nieves J, et al. Role of TL1A and its receptor DR3 in two models of chronic murine ileitis. Proceedings of the National Academy of Sciences of the United States of America. 2006 May;103(22):8441-6.
    • 256. Meylan F, Davidson TS, Kahle E, Kinder M, Acharya K, Jankovic D, et al. The TNFfamily receptor DR3 is essential for diverse T cell-mediated inflammatory diseases. Immunity. [Article]. 2008 Jul;29(1):79-89.
    • 257. Papadakis KA, Zhu DC, Prehn JL, Landers C, Avanesyan A, Lafkas G, et al. Dominant role for TL1A/DR3 pathway in IL-12 plus IL-18-induced IFN-gamma production by peripheral blood and mucosal CCR9(+) T lymphocytes'. J Immunol. 2005 Apr;174(8):4985- 90.
    • 258. Papadakis KA, Prehn JL, Landers C, Han QW, Luo X, Cha SC, et al. TL1A synergizes with IL-12 and IL-18 to enhance IFN-gamma production in human T cells and NK cells. J Immunol. 2004 Jun;172(11):7002-7.
    • 259. Slebioda TJ, Rowley TF, Ferdinand JR, Willoughby JE, Buchan SL, Taraban VY, et al. Triggering of TNFRSF25 promotes CD8(+) T-cell responses and anti-tumor immunity. European Journal of Immunology. 2011 Sep;41(9):2606-11.
    • 260. Heidemann SC, Chavez V, Landers CJ, Kucharzik T, Prehn JL, Targan SR. TL1A Selectively Enhances IL-12/IL-18-Induced NK Cell Cytotoxicity against NK-Resistant Tumor Targets. J Clin Immunol. 2010 Jul;30(4):531-8.
    • 261. Bu RF, Borysenko CW, Li YN, Cao LH, Sabokbar A, Blair HC. Expression and function of TNF-family proteins and receptors in human osteoblasts. Bone. [Article]. 2003 Nov;33(5):760-70.
    • 262. Barrett R, Zhang XL, Koon HW, Vu M, Chang JY, Yeager N, et al. Constitutive TL1A Expression under Colitogenic Conditions Modulates the Severity and Location of Gut Mucosal Inflammation and Induces Fibrostenosis. Am J Pathol. 2012 Feb;180(2):636-49.
    • 263. Bamias G, Kaltsa G, Siakavellas SI, Papaxoinis K, Zampeli E, Michopoulos S, et al. High intestinal and systemic levels of decoy receptor 3 (DcR3) and its ligand TL1A in active ulcerative colitis. Clinical Immunology. 2010 Nov;137(2):242-9.
    • 264. Bamias G, Siakavellas SI, Stamatelopoulos KS, Chryssochoou E, Papamichalel C, Sfikakis PP. Circulating levels of TNF-like cytokine 1A (TL1A) and its decoy receptor 3 (DcR3) in rheumatoid arthritis. Clinical Immunology. [Article]. 2008 Nov;129(2):249-55.
    • 265. Osawa K, Takami N, Shiozawa K, Hashiramoto A, Shiozawa S. Death receptor 3 (DR3) gene duplication in a chromosome region 1p36.3: gene duplication is more prevalent in rheumatoid arthritis. Genes and Immunity. 2004 Sep;5(6):439-43.
    • 266. Zhang J, Wang XH, Fahmi H, Wojcik S, Fikes J, Yu YH, et al. Role of TL1A in the Pathogenesis of Rheumatoid Arthritis. J Immunol. [Article]. 2009 Oct;183(8):5350-7.
    • 267. Konsta M, Bamias G, Tektonidou MG, Christopoulos P, Iliopoulos A, Sfikakis PP. Increased levels of soluble TNF-like cytokine 1A in ankylosing spondylitis. Rheumatology - Advance Access. 2012.
    • 268. Zinovieva E, Bourgain C, Kadi A, Letourneur F, Izac B, Said-Nahal R, et al. Comprehensive Linkage and Association Analyses Identify Haplotype, Near to the TNFSF15 Gene, Significantly Associated with Spondyloarthritis. Plos Genetics. 2009 Jun;5(6).
    • 269. Bamias G, Evangelou K, Vergou T, Tsimaratou K, Kaltsa G, Antoniou C, et al. Upregulation and nuclear localization of TNF-like Cytokine 1A (TL1A) and its receptors DR3 and DcR3 in psoriatic skin lesions. Experimental Dermatology. 2011 Sep;20(9):725-31.
    • 270. McLaren JE, Calder CJ, McSharry BP, Sexton K, Salter RC, Singh NN, et al. In vitro promotion of macrophage foam cell formation by Death Receptor 3 and its ligand TL1A. Immunology. 2010 Dec;131:103-.
    • 271. Kim WJ, Kang YJ, Suk K, Park JE, Kwon BS, Lee WH. Comparative analysis of the expression patterns of various TNFSF/TNFRSF in atherosclerotic plaques. Immunol Invest. [Article]. 2008;37(4):359-73.
    • 272. Al-Lamki RS, Wang J, Tolkovsky AM, Bradley JA, Griffin JL, Thiru S, et al. TL1A both promotes and protects from renal inflammation and injury. J Am Soc Nephrol. [Article]. 2008 May;19(5):953-60.
    • 273. Prehn JL, Mehdizadeh S, Landers CJ, Luo X, Cha SC, Wei P, et al. Potential role for TLlX the new TNF-family member and potent costimulator of IFN-gamma, in mucosal inflammation. Clinical Immunology. 2004 Jul;112(1):66-77.
    • 274. Yamazaki K, McGovern D, Ragoussis J, Paolucci M, Butler H, Jewell D, et al. Single nucleotide polymorphisms in TNFSF15 confer susceptibility to Crohn's disease. Human Molecular Genetics. 2005 Nov;14(22):3499-506.
    • 275. Michelsen KS, Thomas LS, Taylor KD, Yu QT, Mei L, Landers CJ, et al. IBDAssociated TL1A Gene (TNFSF15) Haplotypes Determine Increased Expression of TL1A Protein. Plos One. 2009 Mar;4(3).
    • 276. Picornell Y, Mei L, Taylor K, Yang HY, Torgan SR, Rotter JI. TNFSF15 is an ethnicspecific IBD gene. Inflammatory Bowel Diseases. 2007 Nov;13(11):1333-8.
    • 277. Takedatsu H, Michelsen KS, Wei B, Landers CJ, Thomas LS, Dhall D, et al. TL1A (TNFSF15) regulates the development of chronic colitis by modulating both T-helper 1 and T-helper 17 activation. Gastroenterology. 2008 Aug;135(2):552-67.
    • 278. Kang YJ, Kim WJ, Bae HU, Kim DI, Park YB, Park JE, et al. Involvement of TL1A and DR3 in induction of pro-inflammatory cytokines and matrix metalloproteinase-9 in atherogenesis. Cytokine. 2005 Mar;29(5):229-35.
    • 279. Bamias G, Stamatelopoulos K, Sigala F, Zampeli E, Protogerou A, Papamichael C, et al. Circulating levels of TNF-like Cytokine 1A correlate with the progression of atheromatous lesions in patients with Rheumatoid Arthritis. Clinical Immunology. 2013.
    • 280. Wang ECY, Thern A, Denzel A, Kitson J, Farrow SN, Owen MJ. DR3 regulates negative selection during thymocyte development. Molecular and Cellular Biology. 2001 May;21(10):3451-61.
    • 281. Li WA, Barry ZT, Cohen JD, Wilder CL, Deeds RJ, Keegan PM, et al. Detection of femtomole quantities of mature cathepsin K with zymography. Anal Biochem. [Article]. 2010 Jun;401(1):91-8.
    • 282. Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest. 2000 Dec;106(12):1481-8.
    • 283. Azuma Y, Kaji K, Katogi R, Takeshita S, Kudo A. Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. Journal of Biological Chemistry. 2000 Feb;275(7):4858-64.
    • 284. Brand DD, Latham KA, Rosloniec EF. Collagen-induced arthritis. Nat Protoc. [Article]. 2007;2(5):1269-75.
    • 285. Lories RJU, Matthys P, De Vlam K, Derese I, Luyten FP. Ankylosing enthesitis, dactylitis, and onychoperiostitis in male DBA/1 mice: a model of psoriatic arthritis. Ann Rheum Dis. 2004;63(5):595-8.
    • 286. Braem K, Deroose CM, Luyten FP, Lories RJ. Inhibition of inflammation but not ankylosis by glucocorticoids in mice: further evidence for the entheseal stress hypothesis. Arthritis Research & Therapy. 2012;14(2):R59.
    • 287. Lories RJ, Derese I, Luyten FP. Modulation of bone morphogenetic protein signaling inhibits the onset and progression of ankylosing enthesitis. J Clin Invest. 2005;115(6):1571-9.
    • 288. Grisar J, Bernecker PM, Aringer M, Redlich K, Sedlak M, Wolozcszuk W, et al. Ankylosing spondylitis, psoriatic arthritis, and reactive arthritis show increased bone resorption, but differ with regard to bone formation. The Journal of rheumatology. 2002;29(7):1430-6.
    • 289. El Maghraoui A, Borderie D, Cherruau B, Edouard R, Dougados M, Roux C. Osteoporosis, body composition, and bone turnover in ankylosing spondylitis. The Journal of rheumatology. 1999;26(10):2205.
    • 290. Joffe I, Epstein S, editors. Osteoporosis associated with rheumatoid arthritis: pathogenesis and management. Seminars in arthritis and rheumatism; 1991: Elsevier.
    • 291. Woolf AD. Osteoporosis in rheumatoid arthritis-the clinical viewpoint. Rheumatology. 1991;30(2):82-4.
    • 292. Walsh NC, Crotti TN, Goldring SR, Gravallese EM. Rheumatic diseases: the effects of inflammation on bone. Immunol Rev. 2005;208(1):228-51.
    • 293. Li X, Qin L, Bergenstock M, Bevelock LM, Novack DV, Partridge NC. Parathyroid hormone stimulates osteoblastic expression of MCP-1 to recruit and increase the fusion of pre/osteoclasts. Journal of Biological Chemistry. 2007;282(45):33098.
    • 294. Hounoki H, Sugiyama E, Mohamed SGK, Shinoda K, Taki H, Abdel-Aziz HO, et al. Activation of peroxisome proliferator-activated receptor [gamma] inhibits TNF-[alpha]- mediated osteoclast differentiation in human peripheral monocytes in part via suppression of monocyte chemoattractant protein-1 expression. Bone. 2008;42(4):765- 74.
    • 329. Lawrence RC, Helmick CG, Arnett FC, Deyo RA, Felson DT, Giannini EH, et al. Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis & Rheumatism. 1998;41(5):778-99.
    • 330. Bain BJ, MBBSFRACPMRC aP. Blood cells: a practical guide: Blackwell; 2006.
    • 331. Fujikawa Y, Quinn JM, Sabokbar A, McGee JO, Athanasou NA. The human osteoclast precursor circulates in the monocyte fraction. Endocrinology. 1996;137(9):4058-60.
    • 332. Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdörfer B, Giese T, et al. Quantitative expression of Toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. The Journal of Immunology. 2002;168(9):4531-7.
    • 333. Masters JRW. Human cancer cell lines: fact and fantasy. Nature Reviews Molecular Cell Biology. 2000;1(3):233-6.
    • 334. Gattei V, Bernabei PA, Pinto A, Bezzini R, Ringressi A, Formigli L, et al. Phorbol ester induced osteoclast-like differentiation of a novel human leukemic cell line (FLG 29.1). The Journal of cell biology. 1992;116(2):437-47.
    • 335. Aldinucci D, Quinn JMW, Degan M, Juzbasic S, De Luliis A, Importa S, et al. In vitro cellular systems for studying OC function and differentiation. Methods in molecular medicine: human cell culture protocols Totowa: Human Press Inc. 1996.
    • 336. Ikeda T, Sasaki K, Ikeda K, Yamaoka G, Kawanishi K, Kawachi Y, et al. A new cytokine-dependent monoblastic cell line with t (9; 11)(p22; q23) differentiates to macrophages with macrophage colony-stimulating factor (M-CSF) and to osteoclast-like cells with M-CSF and interleukin-4. Blood. 1998;91(12):4543-53.
    • 337. Ikeda T, Ikeda K, Sasaki K, Kawakami K, Hatake K, Kaji Y, et al. IL-13 as well as IL-4 induces monocytes/macrophages and a monoblastic cell line (UG3) to differentiate into multinucleated giant cells in the presence of M-CSF. Biochemical and Biophysical Research Communications. 1998;253(2):265-72.
    • 338. Soares-Schanoski A, Gómez-Piña V, del Fresno C, Rodríguez-Rojas A, García F, Glaría A, et al. 6-Methylprednisolone down-regulates IRAK-M in human and murine osteoclasts and boosts bone-resorbing activity: a putative mechanism for corticoidinduced osteoporosis. J Leukoc Biol. 2007;82(3):700-9.
    • 339. Jakob F, Siggelkow H, Homann D, Köhrle J, Adamski J, Schütze N. Local estradiol metabolism in osteoblast-and osteoclast-like cells. The Journal of steroid biochemistry and molecular biology. 1997;61(3):167-74.
    • 340. Kzhyshkowska J, Mamidi S, Gratchev A, Kremmer E, Schmuttermaier C, Krusell L, et al. Novel stabilin-1 interacting chitinase-like protein (SI-CLP) is up-regulated in alternatively activated macrophages and secreted via lysosomal pathway. Blood. 2006;107(8):3221-8.
    • 341. Gratchev A, Kzhyshkowska J, Utikal J, Goerdt S. Interleukin‐4 and Dexamethasone Counterregulate Extracellular Matrix Remodelling and Phagocytosis in Type‐2 Macrophages. Scandinavian journal of immunology. 2005;61(1):10-7.
    • 342. Nakamura I, Takahashi N, Sasaki T, Jimi E, Kurokawa T, Suda T. Chemical and physical properties of the extracellular matrix are required for the actin ring formation in osteoclasts. Journal of Bone and Mineral Research. 1996 Dec;11(12):1873-9.
    • 343. Nose M, Yamazaki H, Hagino H, Morio Y, Hayashi SI, Teshima R. Comparison of osteoclast precursors in peripheral blood mononuclear cells from rheumatoid arthritis and osteoporosis patients. Journal of Bone and Mineral Metabolism. 2009 Jan;27(1):57-65.
    • 344. Kudo O, Sabokbar A, Pocock A, Itonaga I, Athanasou NA. Isolation of human osteoclasts formed in vitro: Hormonal effects on the bone-resorbing activity of human osteoclasts. Calcif Tissue Int. 2002 Dec;71(6):539-46.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article