LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Korhonen, H; Carslaw, KS; Forster, PM; Mikkonen, S; Gordon, ND; Kokkola, H (2010)
Publisher: American Geophysical Union
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

mesheuropmc: sense organs, complex mixtures
Observations indicate that the westerly jet in the Southern Hemisphere troposphere is accelerating. Using a global aerosol model we estimate that the increase in wind speed of 0.45 + /- 0.2 m s(-1) decade(-1) at 50-65 degrees S since the early 1980s caused a higher sea spray flux, resulting in an increase of cloud condensation nucleus concentrations of more than 85% in some regions, and of 22% on average between 50 and 65 degrees S. These fractional increases are similar in magnitude to the decreases over many northern hemisphere land areas due to changes in air pollution over the same period. The change in cloud drop concentrations causes an increase in cloud reflectivity and a summertime radiative forcing between at 50 and 65 degrees S comparable in magnitude but acting against that from greenhouse gas forcing over the same time period, and thus represents a substantial negative climate feedback. However, recovery of Antarctic ozone depletion in the next two decades will likely cause a fall in wind speeds, a decrease in cloud drop concentration and a correspondingly weaker cloud feedback.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Carslaw, K. S., O. Boucher, D. V. Spracklen, G. W. Mann, J. G. L. Rae, S. Woodward, and M. Kulmala (2009), Atmospheric aerosols in the Earth system: A review of interactions and feedbacks, Atmos. Chem. Phys. Discuss., 9, 11,087 - 11,183.
    • Charlson, R. J., J. E. Lovelock, M. O. Andreae, and S. G. Warren (1987), Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, 326, 655 - 661, doi:10.1038/326655a0.
    • Edwards, J. M., and A. Slingo (1996), Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model, Q. J. R. Meteorol. Soc., 122, 689 - 719, doi:10.1002/qj.49712253107.
    • Evan, A. T., A. K. Heidinger, and D. J. Vimont (2007), Arguments against a physical long-term trend in global ISCCP cloud amounts, Geophys. Res. Lett., 34, L04701, doi:10.1029/2006GL028083.
    • Forster, P., et al. (2007), Changes in atmospheric constituents and in radiative forcing, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., pp. 129 - 234, Cambridge Univ. Press, Cambridge, U. K.
    • Forster, P. M. de F., and K. P. Shine (1997), Radiative forcing and temperature trends from stratospheric ozone changes, J. Geophys. Res., 102, 10,841 - 10,857, doi:10.1029/96JD03510.
    • Fyfe, J. C., G. J. Boer, and G. M. Flato (1999), The Arctic and Antarctic oscillations and their projected changes under global warming, Geophys. Res. Lett., 26, 1601 - 1604, doi:10.1029/1999GL900317.
    • Kettle, A. J., and M. O. Andreae (2000), Flux of dimethylsulfide from the oceans: A comparison of updated data sets and flux models, J. Geophys. Res., 105, 26,793 - 26,808, doi:10.1029/2000JD900252.
    • Korhonen, H., K. S. Carslaw, D. V. Spracklen, G. W. Mann, and M. T. Woodhouse (2008), Influence of oceanic DMS emissions on CCN concentrations and seasonality over the remote Southern Hemisphere oceans: A global model study, J. Geophys. Res., 113, D15204, doi:10.1029/ 2007JD009718.
    • Latham, J., and M. H. Smith (1990), Effect on global warming of winddependent aerosol generation at the ocean surface, Nature, 347, 372 - 373, doi:10.1038/347372a0.
    • Lubin, D., S. Lynch, R. Clarke, E. Morrow, and S. Hart (2003), Increasing reflectivity of the Antarctic ocean-atmosphere system: Analysis of Total Ozone Mapping Spectrometer (TOMS) and passive microwave data for 1979 - 1994, J. Geophys. Res., 108(D13), 4375, doi:10.1029/ 2002JD002702.
    • Ma╦Ürtensson, M., D. Nilsson, G. de Leeuw, L. H. Cohen, and H.-C. Hansson (2003), Laboratory simulations and parameterization of the primary marine aerosol production, J. Geophys. Res., 108(D9), 4297, doi:10.1029/ 2002JD002263.
    • Monahan, E., D. Spiel, and K. Davidson (1986), A model of marine aerosol generation via whitecaps and wave disruption, in Oceanic Whitecaps and Their Role in Air-Sea Exchange Processes, edited by E. C. Monahan and G. MacNiocaill, pp. 167 - 174, D. Reidel, Dordrecht, Netherlands.
    • Murphy, D. M., P. K. Quinn, L. M. McInnes, F. J. Brechtel, S. M. Kreidenweis, A. M. Middlebrook, M. Posfai, D. S. Thomson, and P. R. Buseck (1998), Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer, Nature, 392, 62 - 64, doi:10.1038/32138.
    • Nenes, A., and J. Seinfeld (2003), Parameterization of cloud droplet formation in global climate models, J. Geophys. Res., 108(D14), 4415, doi:10.1029/2002JD002911.
    • O'Dowd, C. D., B. Langmann, S. Varghese, C. Scannell, D. Ceburnis, and M. C. Facchini (2008), A combined organic-inorganic sea-spray source function, Geophys. Res. Lett., 35, L01801, doi:10.1029/2007GL030331.
    • Philipona, R., K. Behrens, and C. Ruckstuhl (2009), How declining aerosols and rising greenhouse gases forced rapid warming in Europe since the 1980s, Geophys. Res. Lett., 36, L02806, doi:10.1029/2008GL036350.
    • Pierce, J. R., and P. J. Adams (2006), Global evaluation of CCN formation by direct emission of sea salt and growth of ultrafine sea salt, J. Geophys. Res., 111, D06203, doi:10.1029/2005JD006186.
    • Rossow, W. B., and R. A. Schiffer (1999), Advances in understanding clouds from ISCCP, Bull. Am. Meteorol. Soc., 80, 2261 - 2288, doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.
    • Son, S. W., L. M. Polvani, D. W. Waugh, H. Akiyoshi, R. Garcia, D. Kinnison, S. Pawson, E. Rozanov, T. G. Shepherd, and K. Shibata (2008), The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet, Science, 320, 1486 - 1489, doi:10.1126/science. 1155939.
    • Spracklen, D. V., K. J. Pringle, K. S. Carslaw, M. P. Chipperfield, and G. W. Mann (2005), A global off-line model of size resolved aerosol microphysics: I. Model evaluation and prediction of aerosol properties, Atmos. Chem. Phys., 5, 2227 - 2252.
    • Spracklen, D. V., K. J. Pringle, K. S. Carslaw, G. W. Mann, P. Manktelow, and J. Heintzenberg (2007), Evaluation of a global aerosol microphysics model against size-resolved particle statistics in the marine atmosphere, Atmos. Chem. Phys., 7, 2073 - 2090.
    • Thompson, D. W. J., and S. Solomon (2002), Interpretation of recent Southern Hemisphere climate change, Science, 296, 895 - 899, doi:10.1126/ science.1069270.
    • Uppala, S. M., et al. (2005), The ERA-40 re-analysis, Q. J. R. Meteorol. Soc., 131, 2961 - 3012, doi:10.1256/qj.04.176.
    • Yang, X. Y., R. X. Huang, and D. X. Wang (2007), Decadal changes of wind stress over the Southern Ocean associated with Antarctic ozone depletion, J. Clim., 20, 3395 - 3410, doi:10.1175/JCLI4195.1. K. S. Carslaw, P. M. Forster, and N. D. Gordon, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK. H. Kokkola, Kuopio Unit, Finnish Meteorological Institute, PO Box 1627, FI-70211 Kuopio, Finland. H. Korhonen and S. Mikkonen, Department of Physics, University of Kuopio, PO Box 1627, FI-70211 Kuopio, Finland. (hannele.korhonen@ uef.fi)
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article