LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Aad, G. et al. (ATLAS Collaboration) (2016)
Publisher: SISSA
Languages: English
Types: Article
Subjects: scattering [p p], Subatomic Physics, mass [dark matter], Particle Physics - Experiment, ATLAS, ADD model, Hadron-Hadron scattering (experiments), search for [new physics], 530, Settore ING-INF/07 - Misure Elettriche e Elettroniche, final state [photon], hep-ex, High Energy Physics - Experiment, pair production [dark matter], suppression, Settore FIS/04 - Fisica Nucleare e Subnucleare, CERN LHC Coll, missing-energy [transverse momentum], mediation, pair production [WIMP], experimental results, Subatomär fysik, Physik, higher-dimensional [space-time], topology, upper limit [cross section], 13000 GeV-cms, QC0793, axial-vector, p p: colliding beams; new physics: search for; transverse momentum: missing-energy; dark matter: pair production; WIMP: pair production; p p: scattering; mediation; photon: final state; space-time: higher-dimensional; ATLAS; CERN LHC Coll; dark matter: mass; axial-vector; suppression; ADD model; topology; cross section: upper limit; experimental results; 13000 GeV-cms; Hadron-Hadron scattering (experiments), Science & Technology, Física, Settore FIS/01 - Fisica Sperimentale, colliding beams [p p]
ddc: ddc:500.2, ddc:530

Classified by OpenAIRE into

arxiv: High Energy Physics::Experiment
Results of a search for new phenomena in events with an energetic photon and large missing transverse momentum with the ATLAS experiment at the Large Hadron Collider are reported. The data were collected in proton--proton collisions at a centre-of-mass energy of 13 TeV and correspond to an integrated luminosity of 3.2 $fb^{-1}$. The observed data are in agreement with the Standard Model expectations. Exclusion limits are presented in models of new phenomena including pair production of dark matter candidates or large extra spatial dimensions. In a simplified model of dark matter and an axial-vector mediator, the search excludes mediator masses of up to 710 GeV for dark matter candidate masses up to 150 GeV. In an effective theory of dark matter production, values of the suppression scale $M_*$ up to 570 GeV are excluded and the effect of truncation for various coupling values is reported. For the ADD large extra spatial dimension model the search places more stringent limits than earlier searches in the same event topology, excluding $M_D$ up to about 2.3 (2.8) TeV for two (six) additional spatial dimensions; the limits are reduced by 20--40% depending on the number of additional spatial dimensions when applying a truncation procedure. Results of a search for new phenomena in events with an energetic photon and large missing transverse momentum with the ATLAS experiment at the Large Hadron Collider are reported. The data were collected in proton-proton collisions at a centre-of-mass energy of 13 TeV and correspond to an integrated luminosity of 3.2 fb$^{−1}$. The observed data are in agreement with the Standard Model expectations. Exclusion limits are presented in models of new phenomena including pair production of dark matter candidates or large extra spatial dimensions. In a simplified model of dark matter and an axial-vector mediator, the search excludes mediator masses below 710 GeV for dark matter candidate masses below 150 GeV. In an effective theory of dark matter production, values of the suppression scale M$_{∗}$ up to 570 GeV are excluded and the effect of truncation for various coupling values is reported. For the ADD large extra spatial dimension model the search places more stringent limits than earlier searches in the same event topology, excluding M$_{D}$ up to about 2.3 (2.8) TeV for two (six) additional spatial dimensions, the limits are reduced by 20-40% depending on the number of additional spatial dimensions when applying a truncation procedure. Results of a search for new phenomena in events with an energetic photon and large missing transverse momentum with the ATLAS experiment at the Large Hadron Collider are reported. The data were collected in proton--proton collisions at a centre-of-mass energy of 13 TeV and correspond to an integrated luminosity of 3.2 $\rm fb^{-1}$. The observed data are in agreement with the Standard Model expectations. Exclusion limits are presented in models of new phenomena including pair production of dark matter candidates or large extra spatial dimensions. In a simplified model of dark matter and an axial-vector mediator, the search excludes mediator masses of up to 710 GeV for dark matter candidate masses up to 150 GeV. In an effective theory of dark matter production, values of the suppression scale $M_*$ up to 570 GeV are excluded and the effect of truncation for various coupling values is reported. For the ADD large extra spatial dimension model the search places more stringent limits than earlier searches in the same event topology, excluding $M_{\rm D}$ up to about 2.3 (2.8) TeV for two (six) additional spatial dimensions; the limits are reduced by 20--40% depending on the number of additional spatial dimensions when applying a truncation procedure.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • s = 189 GeV, Eur. Phys. J. C 18 (2000) 253 [hep-ex/0005002] [INSPIRE]. [4] L3 collaboration, P. Achard et al., Single photon and multiphoton events with missing energy
    • collisions at LEP, Phys. Lett. B 587 (2004) 16 [hep-ex/0402002] [INSPIRE]. [5] DELPHI collaboration, J. Abdallah et al., Photon events with missing energy in e+e
    • s = 130 GeV to 209 GeV, Eur. Phys. J. C 38 (2005) 395 [hep-ex/0406019] [11] J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M.P. Tait and H.-B. Yu, Constraints
    • on dark matter from colliders, Phys. Rev. D 82 (2010) 116010 [arXiv:1008.1783] [INSPIRE]. [12] J. Abdallah et al., Simpli ed models for dark matter searches at the LHC, Phys. Dark Univ. [23] T. Sjostrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8:1, Comput. [24] NNPDF collaboration, R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B
    • [26] ATLAS collaboration, ATLAS Run 1 PYTHIA8 tunes, ATL-PHYS-PUB-2014-021, CERN, [30] H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [31] T. Gleisberg and S. Hoeche, Comix, a new matrix element generator, JHEP 12 (2008) 039 [32] F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering amplitudes with open loops, Phys. Rev. [38] P. Artoisenet, R. Frederix, O. Mattelaer and R. Rietkerk, Automatic spin-entangled decays of
    • heavy resonances in Monte Carlo simulations, JHEP 03 (2013) 015 [arXiv:1212.3460] [39] T. Sjostrand, S. Mrenna and P.Z. Skands, PYTHIA 6:4 physics and manual, JHEP 05 [40] J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New [41] P.Z. Skands, Tuning Monte Carlo generators: the Perugia tunes, Phys. Rev. D 82 (2010) [43] A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC,
    • Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE]. [44] ATLAS collaboration, The ATLAS simulation infrastructure, Eur. Phys. J. C 70 (2010) 823 [45] GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum.
    • [60] M. Baak, G.J. Besjes, D. C^ote, A. Koutsman, J. Lorenz and D. Short, HistFitter software
    • framework for statistical data analysis, Eur. Phys. J. C 75 (2015) 153 [arXiv:1410.1280] [63] J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) [64] A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J.
    • [66] A.L. Read, Presentation of search results: the CLs technique, J. Phys. G 28 (2002) 2693 [73] XENON100 collaboration, E. Aprile et al., Limits on spin-dependent WIMP-nucleon cross
    • sections from 225 live days of XENON100 data, Phys. Rev. Lett. 111 (2013) 021301 [74] LUX collaboration, D.S. Akerib et al., Results on the spin-dependent scattering of weakly [75] D. Racco, A. Wulzer and F. Zwirner, Robust collider limits on heavy-mediator dark matter,
    • S.S. Bocchetta83, A. Bocci47, C. Bock101, M. Boehler50, D. Boerner175, J.A. Bogaerts32,
    • D. Bogavac14, A.G. Bogdanchikov110, C. Bohm147a, V. Boisvert79, P. Bokan14, T. Bold40a,
    • A.S. Boldyrev164a;164c, M. Bomben82, M. Bona78, M. Boonekamp137, A. Borisov131, G. Borissov74,
    • J. Bortfeldt101, D. Bortoletto121, V. Bortolotto62a;62b;62c, K. Bos108, D. Boscherini22a,
    • M. Bosman13, J.D. Bossio Sola29, J. Boudreau126, J. Bou ard2, E.V. Bouhova-Thacker74,
    • D. Boumediene36, C. Bourdarios118, S.K. Boutle55, A. Boveia32, J. Boyd32, I.R. Boyko67,
    • J. Bracinik19, A. Brandt8, G. Brandt56, O. Brandt60a, U. Bratzler157, B. Brau88, J.E. Brau117,
    • H.M. Braun175; , W.D. Breaden Madden55, K. Brendlinger123, A.J. Brennan90, L. Brenner108,
    • R. Brenner165, S. Bressler172, T.M. Bristow48, D. Britton55, D. Britzger44, F.M. Brochu30,
    • I. Brock23, R. Brock92, G. Brooijmans37, T. Brooks79, W.K. Brooks34b, J. Brosamer16,
    • E. Brost117, J.H Broughton19, P.A. Bruckman de Renstrom41, D. Bruncko145b, R. Bruneliere50,
    • A. Bruni22a, G. Bruni22a, L.S. Bruni108, BH Brunt30, M. Bruschi22a, N. Bruscino23, P. Bryant33,
    • L. Bryngemark83, T. Buanes15, Q. Buat143, P. Buchholz142, A.G. Buckley55, I.A. Budagov67,
    • F. Buehrer50, M.K. Bugge120, O. Bulekov99, D. Bullock8, H. Burckhart32, S. Burdin76,
    • C.D. Burgard50, B. Burghgrave109, K. Burka41, S. Burke132, I. Burmeister45, E. Busato36,
    • D. Buscher50, V. Buscher85, P. Bussey55, J.M. Butler24, C.M. Buttar55, J.M. Butterworth80,
    • P. Butti108, W. Buttinger27, A. Buzatu55, A.R. Buzykaev110;c, S. Cabrera Urban167,
    • D. Caforio129, V.M. Cairo39a;39b, O. Cakir4a, N. Calace51, P. Cala ura16, A. Calandri87,
    • G. Calderini82, P. Calfayan101, L.P. Caloba26a, D. Calvet36, S. Calvet36, T.P. Calvet87,
    • R. Camacho Toro33, S. Camarda32, P. Camarri134a;134b, D. Cameron120, R. Caminal Armadans166,
    • C. Camincher57, S. Campana32, M. Campanelli80, A. Camplani93a;93b, A. Campoverde149,
    • V. Canale105a;105b, A. Canepa160a, M. Cano Bret35e, J. Cantero115, R. Cantrill127a, T. Cao42,
    • M.D.M. Capeans Garrido32, I. Caprini28b, M. Caprini28b, M. Capua39a;39b, R. Caputo85,
    • R.M. Carbone37, R. Cardarelli134a, F. Cardillo50, T. Carli32, G. Carlino105a, L. Carminati93a;93b,
    • S. Caron107, E. Carquin34b, G.D. Carrillo-Montoya32, J.R. Carter30, J. Carvalho127a;127c,
    • D. Casadei19, M.P. Casado13;h, M. Casolino13, D.W. Casper163, E. Castaneda-Miranda146a,
    • R. Castelijn108, A. Castelli108, V. Castillo Gimenez167, N.F. Castro127a;i, A. Catinaccio32,
    • J.R. Catmore120, A. Cattai32, J. Caudron85, V. Cavaliere166, E. Cavallaro13, D. Cavalli93a,
    • G. Cowan79, B.E. Cox86, K. Cranmer111, S.J. Crawley55, G. Cree31, S. Crepe-Renaudin57,
    • F. Crescioli82, W.A. Cribbs147a;147b, M. Crispin Ortuzar121, M. Cristinziani23, V. Croft107,
    • G. Crosetti39a;39b, T. Cuhadar Donszelmann140, J. Cummings176, M. Curatolo49, J. Cuth85,
    • C. Cuthbert151, H. Czirr142, P. Czodrowski3, G. D'amen22a;22b, S. D'Auria55, M. D'Onofrio76,
    • M.J. Da Cunha Sargedas De Sousa127a;127b, C. Da Via86, W. Dabrowski40a, T. Dado145a,
    • T. Dai91, O. Dale15, F. Dallaire96, C. Dallapiccola88, M. Dam38, J.R. Dandoy33, N.P. Dang50,
    • A.C. Daniells19, N.S. Dann86, M. Danninger168, M. Dano Ho mann137, V. Dao50, G. Darbo52a,
    • S. Darmora8, J. Dassoulas3, A. Dattagupta63, W. Davey23, C. David169, T. Davidek130,
    • M. Davies154, P. Davison80, E. Dawe90, I. Dawson140, R.K. Daya-Ishmukhametova88, K. De8,
    • R. de Asmundis105a, A. De Benedetti114, S. De Castro22a;22b, S. De Cecco82, N. De Groot107,
    • P. de Jong108, H. De la Torre84, F. De Lorenzi66, A. De Maria56, D. De Pedis133a, A. De Salvo133a,
    • U. De Sanctis150, A. De Santo150, J.B. De Vivie De Regie118, W.J. Dearnaley74, R. Debbe27,
    • C. Debenedetti138, D.V. Dedovich67, N. Dehghanian3, I. Deigaard108, M. Del Gaudio39a;39b,
    • J. Del Peso84, T. Del Prete125a;125b, D. Delgove118, F. Deliot137, C.M. Delitzsch51,
    • M. Deliyergiyev77, A. Dell'Acqua32, L. Dell'Asta24, M. Dell'Orso125a;125b, M. Della Pietra105a;k,
    • D. della Volpe51, M. Delmastro5, P.A. Delsart57, C. Deluca108, D.A. DeMarco159, S. Demers176,
    • M. Demichev67, A. Demilly82, S.P. Denisov131, D. Denysiuk137, D. Derendarz41, J.E. Derkaoui136d,
    • F. Derue82, P. Dervan76, K. Desch23, C. Deterre44, K. Dette45, P.O. Deviveiros32, A. Dewhurst132,
    • J.T. Kuechler175, S. Kuehn50, A. Kugel60c, F. Kuger174, A. Kuhl138, T. Kuhl44, V. Kukhtin67,
    • R. Kukla137, Y. Kulchitsky94, S. Kuleshov34b, M. Kuna133a;133b, T. Kunigo70, A. Kupco128,
    • H. Kurashige69, Y.A. Kurochkin94, V. Kus128, E.S. Kuwertz169, M. Kuze158, J. Kvita116,
    • T. Kwan169, D. Kyriazopoulos140, A. La Rosa102, J.L. La Rosa Navarro26d, L. La Rotonda39a;39b,
    • C. Lacasta167, F. Lacava133a;133b, J. Lacey31, H. Lacker17, D. Lacour82, V.R. Lacuesta167,
    • E. Ladygin67, R. Lafaye5, B. Laforge82, T. Lagouri176, S. Lai56, S. Lammers63, W. Lampl7,
    • E. Lancon137, U. Landgraf50, M.P.J. Landon78, V.S. Lang60a, J.C. Lange13, A.J. Lankford163,
    • F. Lanni27, K. Lantzsch23, A. Lanza122a, S. Laplace82, C. Lapoire32, J.F. Laporte137, T. Lari93a,
    • F. Lasagni Manghi22a;22b, M. Lassnig32, P. Laurelli49, W. Lavrijsen16, A.T. Law138, P. Laycock76,
    • T. Lazovich59, M. Lazzaroni93a;93b, B. Le90, O. Le Dortz82, E. Le Guirriec87, E.P. Le Quilleuc137,
    • M. LeBlanc169, T. LeCompte6, F. Ledroit-Guillon57, C.A. Lee27, S.C. Lee152, L. Lee1,
    • G. Lefebvre82, M. Lefebvre169, F. Legger101, C. Leggett16, A. Lehan76, G. Lehmann Miotto32,
    • X. Lei7, W.A. Leight31, A. Leisos155;z, A.G. Leister176, M.A.L. Leite26d, R. Leitner130,
    • D. Lellouch172, B. Lemmer56, K.J.C. Leney80, T. Lenz23, B. Lenzi32, R. Leone7, S. Leone125a;125b,
    • C. Leonidopoulos48, S. Leontsinis10, G. Lerner150, C. Leroy96, A.A.J. Lesage137, C.G. Lester30,
    • M. Levchenko124, J. Lev^eque5, D. Levin91, L.J. Levinson172, M. Levy19, D. Lewis78, A.M. Leyko23,
    • M. Leyton43, B. Li35b;aa, H. Li149, H.L. Li33, L. Li47, L. Li35e, Q. Li35a, S. Li47, X. Li86, Y. Li142,
    • Z. Liang35a, B. Liberti134a, A. Liblong159, P. Lichard32, K. Lie166, J. Liebal23, W. Liebig15,
    • A. Limosani151, S.C. Lin152;ab, T.H. Lin85, B.E. Lindquist149, A.E. Lionti51, E. Lipeles123,
    • A. Lipniacka15, M. Lisovyi60b, T.M. Liss166, A. Lister168, A.M. Litke138, B. Liu152;ac, D. Liu152,
    • H. Liu91, H. Liu27, J. Liu87, J.B. Liu35b, K. Liu87, L. Liu166, M. Liu47, M. Liu35b, Y.L. Liu35b,
    • J. Schae er85, S. Schaepe23, S. Schaetzel60b, U. Schafer85, A.C. Scha er118, D. Schaile101,
    • R.D. Schamberger149, V. Scharf60a, V.A. Schegelsky124, D. Scheirich130, M. Schernau163,
    • C. Schiavi52a;52b, S. Schier138, C. Schillo50, M. Schioppa39a;39b, S. Schlenker32,
    • K.R. Schmidt-Sommerfeld102, K. Schmieden32, C. Schmitt85, S. Schmitt44, S. Schmitz85,
    • B. Schneider160a, U. Schnoor50, L. Schoe el137, A. Schoening60b, B.D. Schoenrock92, E. Schopf23,
    • M. Schott85, J. Schovancova8, S. Schramm51, M. Schreyer174, N. Schuh85, M.J. Schultens23,
    • H.-C. Schultz-Coulon60a, H. Schulz17, M. Schumacher50, B.A. Schumm138, Ph. Schune137,
  • No similar publications.

Share - Bookmark

Funded by projects

  • EC | EPLANET
  • SNSF | Teilchenphysik-Experimente...

Related to

  • egiEGI virtual organizations: atlas
  • egiEGI virtual organizations: cms

Cite this article