LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Nwosu, Oluchukwu
Languages: English
Types: Doctoral thesis
Subjects: QE
This research project used 3D seismic data located in deep water fold and thrust belt in the Levant Basin eastern Mediterranean, to investigate the nature and kinematics of compartmentalized thrust related folds. The principal aim is to better understand thrust related fold development and interactions in compressional settings. The fold and thrust belt in the Levant Bain is mainly comprised of overlapping thrust faults of similar and opposing dips segmented or bounded by conjugate sets of strike slip faults. Detailed interpretation and analysis of the 3D geometry of the structures revealed that thrust faulting is an early process in the development of the thrust and fold pair, thrust interact with each other, and strike slip faults along strike. A preliminary end member interaction of thrust faults and strike slip faults is proposed based on observation of their bounding or segmenting pattern.\ud The concept of fault interaction was mainly developed from the investigation of the propagation of thrust fault compartmentalised by strike slip faults. This involves a combination of kinematic analysis which includes fault displacement and shortening profiles, and the patterns of syn kinematic sediments above fold limb. Kinematic data suggests that strike slip faults are acting as barriers to thrust fault propagation. Similar barrier to fault propagation are observed between overlapping thrust faults within a single fold formed by the linkage of smaller thrust folds. The results showed that the faults are restricted as they link and transfer displacement. In addition to the propagation of thrust faults, vertical distribution of fault displacement suggests that they ramp up from detachment, this agrees with the classical models of thrust propagation folds.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article