Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Richards, Sarah-Jane; Otten, Lucienne; Gibson, Matthew I. (2015)
Publisher: R S C Publications
Languages: English
Types: Article
Subjects: R1
Glycan/lectin interactions drive a wide range of recognition and signal transduction processes within nature. However, their measurement is complicated or limited by the analytical tools available. Most technologies require fluorescently labelled proteins (e.g. microarrays) or expensive infrastructure (such as surface plasmon resonance). This also limits their application in biosensing, especially for low-resource settings, where detection of pathogens based on glycan binding could speed up diagnosis. Here we employ a library-oriented approach to immobilise a range of monosaccharides onto polymer-stabilised gold nanoparticles to enable rapid and high-throughput evaluation of their binding specificities with a panel of lectins. The red to blue colour shift upon gold nanoparticle aggregation is used as the output, removing the need for labelled protein, enabling compatibility with 96-well microplates. Furthermore, we demonstrate the use of a flatbed scanner (or digital camera) to extract biophysical data, ensuring that only minimal resources are required. Finally, linear discriminant analysis is employed to demonstrate how the glyconanoparticles can be applied as a multiplexed biosensor capable of identifying pathogenic lectins without the need for any infrastructure and overcoming some of the issues of lectin promiscuity.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 C. R. Bertozzi and L. L. Kiessling, Science, 2001, 291, 2357-2364.
    • 2 L. L. Kiessling, J. E. Gestwicki and L. E. Strong, Angew. Chem., Int. Ed., 2006, 45, 2348-2368.
    • 3 K. T. Pilobello and L. K. Mahal, Curr. Opin. Chem. Biol., 2007, 11, 300-305.
    • 4 N. Sharon, Biochim. Biophys. Acta, 2006, 1760, 527-537.
    • 5 R. J. Pieters, Org. Biomol. Chem., 2009, 7, 2013-2025.
    • 6 M. Ambrosi, N. R. Cameron and B. G. Davis, Org. Biol. Chem., 2005, 3, 1593-1608.
    • 7 H. Feinberg, D. A. Mitchell, K. Drickamer and W. I. Weis, Science, 2001, 294, 2163-2166.
    • 8 Y. C. Lee, R. R. Townsend, M. R. Hardy, J. Lonngren, J. Arnarp, M. Haraldsson and H. Lonn, J. Biol. Chem., 1983, 258, 199-202.
    • 9 J. J. Lundquist and E. J. Toone, Chem. Rev., 2002, 102, 555-578.
    • 10 N. P. Pera and R. J. Pieters, MedChemComm, 2014, 5, 1027-1035.
    • 11 M. Hartmann and T. K. Lindhorst, Eur. J. Org. Chem., 2011, 3583-3609.
    • 12 T. R. Branson and W. B. Turnbull, Chem. Soc. Rev., 2013, 42, 4613-4622.
    • 13 M. W. Jones, S. J. Richards, D. M. Haddleton and M. I. Gibson, Polym. Chem., 2013, 4, 717-723.
    • 14 S.-J. Richards, M. W. Jones, M. Hunaban, D. M. Haddleton and M. I. Gibson, Angew. Chem., Int. Ed., 2012, 51, 7812-7816.
    • 15 M. Fais, R. Karamanska, S. Allman, S. A. Fairhurst, P. Innocenti, A. J. Fairbanks, T. J. Donohoe, B. G. Davis, D. A. Russell and R. A. Field, Chem. Sci., 2011, 2, 1952-1959.
    • 16 C. L. Schofield, B. Mukhopadhyay, S. M. Hardy, M. B. McDonnell, R. A. Field and D. A. Russell, Analyst, 2008, 133, 626-634.
    • 17 M. C. Galan, D. Benito-Alifonso and G. M. Watt, Org. Biomol. Chem., 2011, 9, 3598-3610.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • RCUK | LSI Doctoral Training Cent...

Cite this article