Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
McDermott, Martina; Eustace, Alex J.; Busschots, Steven; Breen, Laura; Crown, John; Clynes, Martin; O’Donovan, Norma; Stordal, Britta (2014)
Publisher: Frontiers Media S.A.
Journal: Frontiers in Oncology
Languages: English
Types: Article
Subjects: Methods Article, cell lines, drug-resistant cell line, drug-resistance, selection strategy, cancer, chemotherapy, Oncology
PUBLISHED The development of a drug-resistant cell line can take from 3 to 18 months. However, little is published on the methodology of this development process. This article will discuss key decisions to be made prior to starting resistant cell line development; the choice of parent cell line, dose of selecting agent, treatment interval, and optimizing the dose of drug for the parent cell line. Clinically relevant drug-resistant cell lines are developed by mimicking the conditions cancer patients experience during chemotherapy and cell lines display between two- and eight-fold resistance compared to their parental cell line. Doses of drug administered are low, and a pulsed treatment strategy is often used where the cells recover in drug-free media. High-level laboratory models are developed with the aim of understanding potential mechanisms of resistance to chemotherapy agents. Doses of drug are higher and escalated over time. It is common to have difficulty developing stable clinically relevant drug-resistant cell lines. A comparative selection strategy of multiple cell lines or multiple chemotherapeutic agents mitigates this risk and gives insight into which agents or type of cell line develops resistance easily. Successful selection strategies from our research are presented. Pulsed-selection produced platinum or taxane-resistant large cell lung cancer (H1299 and H460) and temozolomide-resistant melanoma (Malme-3M and HT144) cell lines. Continuous selection produced a lapatinib-resistant breast cancer cell line (HCC1954). Techniques for maintaining drug-resistant cell lines are outlined including; maintaining cells with chemotherapy, pulse treating with chemotherapy, or returning to master drug-resistant stocks. The heterogeneity of drug-resistant models produced from the same parent cell line with the same chemotherapy agent is explored with reference to P-glycoprotein. Heterogeneity in drug-resistant cell lines reflects the heterogeneity that can occur in clinical drug resistance.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Biedler JL, Riehm H. Cellular resistance to actinomycin D in Chinese hamster cells in vitro: cross-resistance, radioautographic, and cytogenetic studies. Cancer Res (1970) 30(4):1174-84.
    • 2. Roberts D, Wodinsky I, Hall TC. Studies on folic reductase. Cancer Res (1965) 25(11 Pt 1):1899-903.
    • 3. Burchenal JH, Robinson E, Johnston SF, Kushida MN. The induction of resistance to 4-amino-N10-methyl-pteroylglutamic acid in a strain of transmitted mouse leukemia. Science (1950) 111(2875):116-7. doi:10.1126/science.111. 2875.116
    • 4. Kessel D, Botterill V, Wodinsky I. Uptake and retention of daunomycin by mouse leukemic cells as factors in drug response. Cancer Res (1968) 28(5):938-41.
    • 5. Law LW. Resistance in leukemic cells to a guanine analog, 8-azaguanine. Proc Soc Exp Biol Med (1951) 78(2):499-502. doi:10.3181/00379727-78-19118
    • 6. Martin A, Clynes M. Comparison of 5 microplate colorimetric assays for in vitro cytotoxicity testing and cell proliferation assays. Cytotechnology (1993) 11(1):49-58. doi:10.1007/BF00749057
    • 7. Franken NAP, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc (2006) 1(5):2315-9. doi:10.1038/nprot.2006.339
    • 8. Kawai H, Kiura K, Tabata M,Yoshino T, Takata I, Hiraki A, et al. Characterization of non-small-cell lung cancer cell lines established before and after chemotherapy. Lung Cancer (2002) 35(3):305-14. doi:10.1016/S0169-5002(01)00430-5
    • 9. Kuroda H, Sugimoto T, Ueda K, Tsuchida S, Horii Y, Inazawa J, et al. Different drug sensitivity in two neuroblastoma cell lines established from the same patient before and after chemotherapy. Int J Cancer (1991) 47(5):732-7. doi:10.1002/ijc.2910470518
    • 10. Hida T, Ueda R, Takahashi T, Watanabe H, Kato T, Suyama M, et al. Chemosensitivity and radiosensitivity of small cell lung cancer cell lines studied by a newly developed 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) hybrid assay. Cancer Res (1989) 49(17):4785-90.
    • 11. Berendsen HH, de Leij L, de Vries EGE, Mesander G, Mulder NH, de Jong B, et al. Characterization of three small cell lung cancer cell lines established from one patient during longitudinal follow-up. Cancer Res (1988) 48(23):6891-9.
    • 12. Sakai W, Swisher EM, Jacquemont C, Chandramohan KV, Couch FJ, Langdon SP, et al. Functional restoration of BRCA2 protein by secondary BRCA2 mutations in BRCA2-mutated ovarian carcinoma. Cancer Res (2009) 69(16):6381-6. doi:10.1158/0008-5472.CAN-09-1178
    • 13. Stronach EA, Chen M, Maginn EN, Agarwal R, Mills GB, Wasan H, et al. DNAPK mediates AKT activation and apoptosis inhibition in clinically acquired platinum resistance. Neoplasia (2011) 13(11):1069-80.
    • 14. Langdon SP, Lawrie SS, Hay FG, Hawkes MM, McDonald A, Hayward IP, et al. Characterization and properties of nine human ovarian adenocarcinoma cell lines. Cancer Res (1988) 48(21):6166-72.
    • 15. Cullen KV, Davey RA, Davey MW. Verapamil-stimulated glutathione transport by the multidrug resistance-associated protein (MRP1) in leukaemia cells. Biochem Pharmacol (2001) 62(4):417-24. doi:10.1016/S0006-2952(01)00681-5
    • 16. Davey RA, Longhurst TJ, Davey MW, Belov L, Harvie RM, Hancox D, et al. Drug resistance mechanisms and MRP expression in response to epirubicin treatment in a human leukaemia cell line. Leuk Res (1995) 19(4):275-82. doi:10.1016/0145-2126(94)00159-8
    • 17. Locke VL, Davey RA, Davey MW. Altered drug sensitivity in response to idarubicin treatment in K562 human leukaemia cells. Br J Haematol (1999) 106(1):86-91. doi:10.1046/j.1365-2141.1999.01494.x
    • 18. Breen L, Murphy L, Keenan J, Clynes M. Development of taxane resistance in a panel of human lung cancer cell lines. Toxicol In vitro (2008) 22(5):1234-41. doi:10.1016/j.tiv.2008.04.005
    • 19. Stordal BK, Davey MW, Davey RA. Oxaliplatin induces drug resistance more rapidly than cisplatin in H69 small cell lung cancer cells. Cancer Chemother Pharmacol (2006) 58(2):256-65. doi:10.1007/s00280-005-0148-7
    • 20. Stordal B, Peters G, Davey R. Similar chromosomal changes in cisplatin and oxaliplatin-resistant sublines of the H69 SCLC cell line are not associated with platinum resistance. Genes Chromosomes Cancer (2006) 45(12):1094-105. doi:10.1002/gcc.20373
    • 21. Ma J, Maliepaard M, Kolker HJ, Verweij J, Schellens JH. Abrogated energydependent uptake of cisplatin in a cisplatin-resistant subline of the human ovarian cancer cell line IGROV-1. Cancer Chemother Pharmacol (1998) 41(3):186-92. doi:10.1007/s002800050727
    • 22. Liang XJ, Shen DW, Garfield S, Gottesman MM, Liang XJ, Shen DW, et al. Mislocalization of membrane proteins associated with multidrug resistance in cisplatin-resistant cancer cell lines. Cancer Res (2003) 63(18):5909-16.
    • 23. Shen DW, Akiyama S, Schoenlein P, Pastan I, Gottesman MM. Characterisation of high-level cisplatin-resistant cell lines established from a human hepatoma cell line and human KB adenocarcinoma cells: cross-resistance and protein changes. Br J Cancer (1995) 71(4):676-83. doi:10.1038/bjc.1995.134
    • 24. Akiyama S, Fojo A, Hanover JA, Pastan I, Gottesman MM. Isolation and genetic characterization of human KB cell lines resistant to multiple drugs. Somat Cell Mol Genet (1985) 11(2):117-26. doi:10.1007/BF01534700
    • 25. Clynes M, Redmond A, Moran E, Gilvarry U. Multiple drug-resistance in variant of a human non-small cell lung carcinoma cell line, DLKP-A. Cytotechnology (1992) 10(1):75-89. doi:10.1007/BF00376102
    • 26. Hills CA, Kelland LR, Abel G, Siracky J, Wilson AP, Harrap KR. Biological properties of ten human ovarian carcinoma cell lines: calibration in vitro against four platinum complexes. Br J Cancer (1989) 59(4):527-34. doi:10.1038/bjc.1989.108
    • 27. Kunzmann R, Hozel F. Karyotype alterations in human ovarian carcinoma cells during long-term cultivation and nude mouse passage. Cancer Genet Cytogenet (1987) 28(2):201-12. doi:10.1016/0165-4608(87)90206-8
    • 28. CRL-1978™ (ES-2) ATCC Datasheet (2012). Available from: http://www. lgcstandards-atcc.org
    • 29. Emoto M, Oshima K, Ishiguro M, Iwasaki H, Kawarabayashi T, Kikuchi M. Establishment and characterization of a serous papillary adenocarcinoma cell line of the human ovary in a serum-free culture. Pathol Res Pract (1999) 195(4):238-43. doi:10.1016/S0344-0338(99)80040-5
    • 30. Hamidovic A, Hahn K, Kolesar J. Clinical significance of ABCB1 genotyping in oncology. J Oncol Pharm Pract (2010) 16(1):39-44. doi:10.1177/ 1078155209104380
    • 31. Mackillop WJ, Trent JM, Stewart SS, Buick RN. Tumor progression studied by analysis of cellular features of serial ascitic ovarian carcinoma tumors. Cancer Res (1983) 43(2):874-8.
    • 32. Filmus JE, Buick RN. Stability of c-K-ras amplification during progression in a patient with adenocarcinoma of the ovary. Cancer Res (1985) 45(9): 4468-72.
    • 33. Filmus J, Trent JM, Pullano R, Buick RN. A cell line from a human ovarian carcinoma with amplification of the K-ras gene. Cancer Res (1986) 46(10):5179-82.
    • 34. Benard J, Da Silva J, De Blois MC, Boyer P, Duvillard P, Chiric E, et al. Characterization of a human ovarian adenocarcinoma line, IGROV1, in tissue culture and in nude mice. Cancer Res (1985) 45(10):4970-9.
    • 35. Alama A, Barbieri F, Favre A, Cagnoli M, Noviello E, Pedullá F, et al. Establishment and characterization of three new cell lines derived from the ascites of human ovarian carcinomas. Gynecol Oncol (1996) 62(1):82-8. doi:10.1006/ gyno.1996.0194
    • 36. Schilder RJ, Hall L, Monks A, Handel LM, Fornace AJ Jr, Ozols RF, et al. Metallothionein gene expression and resistance to cisplatin in human ovarian cancer. Int J Cancer (1990) 45(3):416-22. doi:10.1002/ijc.2910450306
    • 37. Hamilton TC, Young RC, McKoy WM, Grotzinger KR, Green JA, Chu EW, et al. Characterization of a human ovarian carcinoma cell line (NIH:OVCAR-3) with androgen and estrogen receptors. Cancer Res (1983) 43(11):5379-89.
    • 38. Yuan Y, Kim WH, Han HS, Lee JH, Park HS, Chung JK, et al. Establishment and characterization of human ovarian carcinoma cell lines. Gynecol Oncol (1997) 66(3):378-87. doi:10.1006/gyno.1997.4785
    • 39. Buick RN, Pullano R, Trent JM. Comparative properties of five human ovarian adenocarcinoma cell lines. Cancer Res (1985) 45(8):3668-76.
    • 40. Himmelstein KJ, Patton TF, Belt RJ, Taylor S, Repta AJ, Sternson LA. Clinical kinetics of intact cisplatin and some related species. Clin Pharmacol Ther (1981) 29(5):658-64. doi:10.1038/clpt.1981.91
    • 41. Vermorken JB, van der Vijgh WJ, Klein I, Hart AA, Gall HE, Pinedo HM. Pharmacokinetics of free and total platinum species after short-term infusion of cisplatin. Cancer Treat Rep (1984) 68(3):505-13.
    • 42. Los G, Verdegaal E, Noteborn HP, Ruevekamp M, de Graeff GA, Meesters EW, et al. Cellular pharmacokinetics of carboplatin and cisplatin in relation to their cytotoxic action. Biochem Pharmacol (1991) 42(2):357-63. doi:10.1016/0006- 2952(91)90723-I
    • 43. Oguri S, Sakakibara T, Mase H, Shimizu T, Ishikawa K, Kimura K, et al. Clinical pharmacokinetics of carboplatin. J Clin Pharmacol (1988) 28(3):208-15. doi:10.1002/j.1552-4604.1988.tb03134.x
    • 44. Elferink F, van der Vijgh WJ, Klein I, Vermorken JB, Gall HE, Pinedo HM. Pharmacokinetics of carboplatin after i.v. administration. Cancer Treat Rep (1987) 71(12):1231-7.
    • 45. Newell DR, Siddik ZH, Gumbrell LA, Boxall FE, Gore ME, Smith IE, et al. Plasma free platinum pharmacokinetics in patients treated with high dose carboplatin. Eur J Cancer Clin Oncol (1987) 23(9):1399-405. doi:10.1016/0277-5379(87) 90126-X
    • 46. Calvert AH, Newell DR, Gumbrell LA, O'Reilly S, Burnell M, Boxall FE, et al. Carboplatin dosage: prospective evaluation of a simple formula based on renal function. J Clin Oncol (1989) 7(11):1748-56.
    • 47. Pohl G, Ho CL, Kurman RJ, Bristow R, Wang TL, Shih IM. Inactivation of the mitogen-activated protein kinase pathway as a potential target-based therapy in ovarian serous tumors with KRAS or BRAF mutations. Cancer Res (2005) 65(5):1994-2000. doi:10.1158/0008-5472.CAN-04-3625
    • 48. Yamamoto N, Nokihara H, Yamada Y, Goto Y, Tanioka M, Shibata T, et al. A phase I, dose-finding and pharmacokinetic study of olaparib (AZD2281) in Japanese patients with advanced solid tumors. Cancer Sci (2012) 103(3):504-9. doi:10.1111/j.1349-7006.2011.02179.x
    • 49. Kim HK, Lin CC, Parker D, Veals J, Lim J, Likhari P, et al. High-performance liquid chromatographic determination and stability of 5-(3-methyltriazen-1- yl)-imidazo-4-carboximide, the biologically active product of the antitumor agent temozolomide, in human plasma. J Chromatogr B Biomed Sci Appl (1997) 703(1-2):225-33. doi:10.1016/S0378-4347(97)00431-3
    • 50. Bruno R, Sanderink GJ. Pharmacokinetics and metabolism of Taxotere (docetaxel). Cancer Surv (1993) 17:305-13.
    • 51. Paul B, Trovato JA, Thompson J. Lapatinib: a dual tyrosine kinase inhibitor for metastatic breast cancer. Am J Health Syst Pharm (2008) 65(18):1703-10. doi:10.2146/ajhp070646
    • 52. Goldenberg MM. Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin Ther (1999) 21(2):309-18. doi:10.1016/S0149-2918(00)88288-0
    • 53. du BA, Luck HJ, Buser K, Meerpohl HG, Sessa C, Klaassen U, et al. Extended phase II study of paclitaxel as a 3-h infusion in patients with ovarian cancer previously treated with plantinum. Eur J Cancer (1997) 33(3):379-84. doi:10.1016/S0959-8049(97)89009-0
    • 54. Varma MVS, Sateesh K, Panchagnula R. Functional role of P-glycoprotein in limiting intestinal absorption of drugs: contribution of passive permeability to P-glycoprotein mediated efflux transport. Mol Pharm (2005) 2(1):12-21. doi:10.1021/mp0499196
    • 55. Mross K, Holländer N, Hauns B, Schumacher M, Maier-Lenz H. The pharmacokinetics of a 1-h paclitaxel infusion. Cancer Chemother Pharmacol (2000) 45(6):463-70. doi:10.1007/s002800051020
    • 56. Joerger M, Huitema AD, van den Bongard DH, Schellens JH, Beijnen JH. Quantitative effect of gender, age, liver function, and body size on the population pharmacokinetics of paclitaxel in patients with solid tumors. Clin Cancer Res (2006) 12(7 Pt 1):2150-7. doi:10.1158/1078-0432.CCR-05-2069
    • 57. Marusyk A, Polyak K. Tumor heterogeneity: causes and consequences. Biochim Biophys Acta (2010) 1805(1):105-17. doi:10.1016/j.bbcan.2009.11.002
    • 58. Gerlinger M, Swanton C. How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine. Br J Cancer (2010) 103(8):1139-43. doi:10.1038/sj.bjc.6605912
    • 59. Cooke SL, Ng CKY, Melnyk N, Garcia MJ, Hardcastle T, Temple J, et al. Genomic analysis of genetic heterogeneity and evolution in high-grade serous ovarian carcinoma. Oncogene (2010) 29(35):4905-13. doi:10.1038/onc.2010.245
    • 60. Martins FC, De S, Almendro V, Gonen M, Park SY, Blum JL, et al. Evolutionary pathways in BRCA1-associated breast tumors. Cancer Discov (2012) 2(6):503-11. doi:10.1158/2159-8290.CD-11-0325
    • 61. Barr MP, Gray SG, Hoffmann AC, Hilger RA, Thomale J, O'Flaherty JD, et al. Generation and characterisation of cisplatin-resistant non-small cell lung cancer cell lines displaying a stem-like signature. PLoS One (2013) 8(1):e54193. doi:10.1371/journal.pone.0054193
    • 62. Breen L, Keenan J, Clynes M. Generation of lung cancer cell line variants by drug selection or cloning. Methods Mol Biol (2011) 731:125-33. doi:10.1007/978-1- 61779-080-5_11
    • 63. Yang LY, Trujillo JM, Siciliano MJ, Kido Y, Siddik ZH, Su YZ. Distinct Pglycoprotein expression in two subclones simultaneously selected from a human colon carcinoma cell line by cis-diamminedichloroplatinum (II). Int J Cancer (1993) 53(3):478-85. doi:10.1002/ijc.2910530321
    • 64. Sakai W, Swisher EM, Karlan BY, Agarwal MK, Higgins J, Friedman C, et al. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature (2008) 451(7182):1116-20. doi:10.1038/nature06633
    • 65. Xia W, Bacus S, Hegde P, Husain I, Strum J, Liu L, et al. A model of acquired autoresistance to a potent ErbB2 tyrosine kinase inhibitor and a therapeutic strategy to prevent its onset in breast cancer. Proc Natl Acad Sci U S A (2006) 103(20):7795-800. doi:10.1073/pnas.0602468103
    • 66. Xia W, Bacus S, Husain I, Liu L, Zhao S, Liu Z, et al. Resistance to ErbB2 tyrosine kinase inhibitors in breast cancer is mediated by calcium-dependent activation of RelA. Mol Cancer Ther (2010) 9(2):292-9. doi:10.1158/1535-7163.MCT-09- 1041
    • 67. Aird KM, Ghanayem RB, Peplinski S, Lyerly HK, Devi GR. X-linked inhibitor of apoptosis protein inhibits apoptosis in inflammatory breast cancer cells with acquired resistance to an ErbB1/2 tyrosine kinase inhibitor. Mol Cancer Ther (2010) 9(5):1432-42. doi:10.1158/1535-7163.MCT-10-0160
    • 68. Liu L, Greger J, Shi H, Liu Y, Greshock J, Annan R, et al. Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: activation of AXL. Cancer Res (2009) 69(17):6871-8. doi:10.1158/0008-5472.CAN-08-4490
    • 69. Martin AP, Miller A, Emad L, Rahmani M, Walker T, Mitchell C, et al. Lapatinib resistance in HCT116 cells is mediated by elevated MCL-1 expression and decreased BAK activation and not by ERBB receptor kinase mutation. Mol Pharmacol (2008) 74(3):807-22. doi:10.1124/mol.108.047365
    • 70. Huang C, Park C, Hilsenbeck S, Ward R, Rimawi M, Wang YC, et al. Beta1 integrin mediates an alternative survival pathway in breast cancer cells resistant to lapatinib. Breast Cancer Res (2011) 13(4):R84. doi:10.1186/bcr2936
    • 71. Rexer BN, Ham A-JL, Rinehart C, Hill S, de Matos Granja-Ingram N, GonzalezAngulo AM, et al. Phosphoproteomic mass spectrometry profiling links Src family kinases to escape from HER2 tyrosine kinase inhibition. Oncogene (2011) 30(40):4163-74. doi:10.1038/onc.2011.130
    • 72. Wang YC, Morrison G, Gillihan R, Guo J, Ward R, Fu X, et al. Different mechanisms for resistance to trastuzumab versus lapatinib in HER2-positive breast cancers - role of estrogen receptor and HER2 reactivation. Breast Cancer Res (2011) 13(6):R121. doi:10.1186/bcr3067
    • 73. Gazdar AF, Kurvari V, Virmani A, Gollahon L, Sakaguchi M, Westerfield M, et al. Characterization of paired tumor and non-tumor cell lines established from patients with breast cancer. Int J Cancer (1998) 78(6):766-74. doi:10.1002/ (SICI)1097-0215(19981209)78:6<766::AID-IJC15>3.0.CO;2-L
    • 74. Xia W, Mullin RJ, Keith BR, Liu LH, Ma H, Rusnak DW, et al. Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene (2002) 21(41):6255-63. doi:10.1038/sj.onc.1205794
    • 75. Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med (2006) 355(26):2733-43. doi:10.1056/NEJMoa064320
    • 76. Prescribing information for Tykerb. GlaxoSmithKline (2013). Available from: http://us.gsk.com/products/assets/us_tykerb.pdf
    • 77. Burris HA, Hurwitz HI, Dees EC, Dowlati A, Blackwell KL, O'Neil B, et al. Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J Clin Oncol (2005) 23(23):5305-13. doi:10.1200/JCO.2005.16.584
    • 78. O'Brien NA, Browne BC, Chow L, Wang Y, Ginther C, Arboleda J, et al. Activated phosphoinositide 3-kinase/AKT signaling confers resistance to trastuzumab but not lapatinib. Mol Cancer Ther (2010) 9(6):1489-502. doi:10.1158/1535-7163. MCT-09-1171
    • 79. Brock CS, Newlands ES, Wedge SR, Bower M, Evans H, Colquhoun I, et al. Phase I trial of temozolomide using an extended continuous oral schedule. Cancer Res (1998) 58(19):4363-7.
    • 80. Quirt I, Verma S, Petrella T, Bak K, Charette M. Temozolomide for the treatment of metastatic melanoma: a systematic review. Oncologist (2007) 12(9):1114-23. doi:10.1634/theoncologist.12-9-1114
    • 81. Azzabi A, Hughes AN, Calvert PM, Plummer ER, Todd R, Griffin MJ, et al. Phase I study of temozolomide plus paclitaxel in patients with advanced malignant melanoma and associated in vitro investigations. Br J Cancer (2005) 92(6):1006-12. doi:10.1038/sj.bjc.6602438
    • 82. Friedman HS, Kerby T, Calvert H. Temozolomide and treatment of malignant glioma. Clin Cancer Res (2000) 6(7):2585-97.
    • 83. Dhodapkar M, Rubin J, Reid JM, Burch PA, Pitot HC, Buckner JC, et al. Phase I trial of temozolomide (NSC 362856) in patients with advanced cancer. Clin Cancer Res (1997) 3(7):1093-100.
    • 84. Middleton MR, Grob JJ, Aaronson N, Fierlbeck G, Tilgen W, Seiter S, et al. Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J Clin Oncol (2000) 18(1):158.
    • 85. Jordan E, Eustace A, Collins DM, O'Donovan N, Crown J. Src inhibition as a method to overcome temozolomide resistance in melanoma. ESMO Congress 2012. (2012). Available from: http://oncologypro.esmo.org/ Meeting-Resources/ESMO-2012/Src-inhibition-as-a-method-to-overcometemozolomide-resistance-in-melanoma
    • 86. Liang XJ, Yin JJ, Zhou JW, Wang PC, Taylor B, Cardarelli C, et al. Changes in biophysical parameters of plasma membranes influence cisplatin resistance of sensitive and resistant epidermal carcinoma cells. Exp Cell Res (2004) 293(2):283-91. doi:10.1016/j.yexcr.2003.10.012
    • 87. Stordal B, Davey M. Understanding cisplatin resistance using cellular models. IUBMB Life (2007) 59(11):696-9. doi:10.1080/15216540701636287
    • 88. Tegze B, Zallasi Z, Haltrich I, Penzvalto Z, Toth Z, Liko I, et al. Parallel evolution under chemotherapy pressure in 29 breast cancer cell lines results in dissimilar mechanisms of resistance. PLoS One (2012) 7(2):e30804. doi:10.1371/journal. pone.0030804
    • 89. Locke VL, Davey RA, Davey MW. Modulation of drug and radiation resistance in small cell lung cancer cells by paclitaxel. Anticancer Drugs (2003) 14(7):523-31. doi:10.1097/00001813-200308000-00004
    • 90. Stordal B, Hamon M, McEneaney V, Roche S, Gillet JP, O'Leary JJ, et al. Resistance to paclitaxel in a cisplatin-resistant ovarian cancer cell line is mediated by Pglycoprotein. PLoS One (2012) 7(7):e40717. doi:10.1371/journal.pone.0040717
    • 91. Yang X, Page M. P-glycoprotein expression in ovarian cancer cell line following treatment with cisplatin. Oncol Res (1995) 7(12):619-24.
    • 92. Yang H, Zou W, Li Y, Chen B, Xin X. Bridge linkage role played by CD98hc of anti-tumor drug resistance and cancer metastasis on cisplatinresistant ovarian cancer cells. Cancer Biol Ther (2007) 6(6):942-7. doi:10.4161/ cbt.6.6.4190
    • 93. Xu H, Choi SM, An CS, Min YD, Kim KC, Kim KJ, et al. Concentrationdependent collateral sensitivity of cisplatin-resistant gastric cancer cell sublines. Biochem Biophys Res Commun (2005) 328(2):618-22. doi:10.1016/j.bbrc.2005. 01.015
    • 94. Parekh H, Simpkins H. Cross-resistance and collateral sensitivity to natural product drugs in cisplatin-sensitive and -resistant rat lymphoma and human ovarian carcinoma cells. Cancer Chemother Pharmacol (1996) 37(5):457-62. doi:10.1007/s002800050412
    • 95. Hamaguchi K, Godwin AK, Yakushiji M, O'Dwyer PJ, Ozols RF, Hamilton TC. Cross-resistance to diverse drugs is associated with primary cisplatin resistance in ovarian cancer cell lines. Cancer Res (1993) 53(21):5225-32.
    • 96. Perego P, Romanelli S, Carenini N, Magnani I, Leone R, Bonetti A, et al. Ovarian cancer cisplatin-resistant cell lines: multiple changes including collateral sensitivity to Taxol. Ann Oncol (1998) 9(4):423-30. doi:10.1023/A: 1008265012435
    • 97. Martin A, Clynes M. Acid phosphatase: endpoint for in vitro toxicity tests. In vitro Cell Dev Biol (1991) 27A(3 Pt 1):183-4. doi:10.1007/BF02630912
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

  • SFI | SRC MTC: Molecular Therapeu...

Cite this article