LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Nicodemi, Mario; Prisco, Antonella (2007)
Publisher: Public Library of Science
Languages: English
Types: Article
Subjects: QH426
X chromosome inactivation (XCI) is the phenomenon occurring in female mammals whereby dosage compensation of\ud X-linked genes is obtained by transcriptional silencing of one of their two X chromosomes, randomly chosen during\ud early embryo development. The earliest steps of random X-inactivation, involving counting of the X chromosomes and\ud choice of the active and inactive X, are still not understood. To explain "counting and choice," the longstanding\ud hypothesis is that a molecular complex, a "blocking factor" (BF), exists. The BF is present in a single copy and can\ud randomly bind to just one X per cell which is protected from inactivation, as the second X is inactivated by default. In\ud such a picture, the missing crucial step is to explain how the molecular complex is self-assembled, why only one is\ud formed, and how it binds only one X. We answer these questions within the framework of a schematic Statistical\ud Physics model, investigated by Monte Carlo computer simulations. We show that a single complex is assembled as a\ud result of a thermodynamic process relying on a phase transition occurring in the system which spontaneously breaks\ud the symmetry between the X’s. We discuss, then, the BF interaction with X chromosomes. The thermodynamics of the\ud mechanism that directs the two chromosomes to opposite fates could be, thus, clarified. The insights on the selfassembling\ud and X binding properties of the BF are used to derive a quantitative scenario of biological implications\ud describing current experimental evidences on "counting and choice."

Share - Bookmark

Cite this article