Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Sutton, Elizabeth R.; Yu, Yachuan; Shimeld, Sebastian M.; White-Cooper, Helen; Alphey, Luke (2016)
Publisher: Biomed Central
Journal: BMC Genomics
Languages: English
Types: Article
Subjects: Q1, Ceratitis capitata, Synthetic biology, Biotechnology, Research Article, Genetics, Pest insect, QH301, Male germline, Aedes aegypti, RNA-seq

Classified by OpenAIRE into

mesheuropmc: fungi
Background Synthetic biology approaches are promising new strategies for control of pest insects that transmit disease and cause agricultural damage. These strategies require characterised modular components that can direct appropriate expression of effector sequences, with components conserved across species being particularly useful. The goal of this study was to identify genes from which new potential components could be derived for manipulation of the male germline in two major pest species, the mosquito Aedes aegypti and the tephritid fruit fly Ceratitis capitata. Results Using RNA-seq data from staged testis samples, we identified several candidate genes with testis-specific expression and suitable expression timing for use of their regulatory regions in synthetic control constructs. We also developed a novel computational pipeline to identify candidate genes with testis-specific splicing from this data; use of alternative splicing is another method for restricting expression in synthetic systems. Some of the genes identified display testis-specific expression or splicing that is conserved across species; these are particularly promising candidates for construct development. Conclusions In this study we have identified a set of genes with testis-specific expression or splicing. In addition to their interest from a basic biology perspective, these findings provide a basis from which to develop synthetic systems to control important pest insects via manipulation of the male germline. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3280-3) contains supplementary material, which is available to authorized users.

Share - Bookmark

Funded by projects

Cite this article