Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ruderman, M.S. (2003)
Publisher: EDP Sciences
Languages: English
Types: Article
Motivated by recent Transition Region and Coronal Explorer (TRACE) observations of damped oscillations in coronal loops, Ruderman & Roberts (2002), studied resonant damping of kink oscillations of thin straight magnetic tubes in a cold plasma. In their analysis, Ruderman & Roberts considered magnetic tubes with circular cross-sections. We extend their analysis for magnetic tubes with elliptic cross-sections. We find that there are two infinite sequences of the eigenfrequencies of the tube oscillations, {omega(nc)} and {omega(ns)}, n = 1,2,.... The eigenfrequencies {omega(nc)} and {omega(ns)} correspond to modes with 2n nodes at the tube boundary. In particular, omega(1c) and omega(1s) correspond to two kink modes. These modes are linearly polarized in the direction of the large and small axis of the tube elliptic cross-section respectively. The sequence {omega(nc)} is monotonically growing and {omega(ns)} monotonically decreasing, and they both tend to omega(k) as n --> infinity, where omega(k) is the frequency of the kink mode of tubes with circular cross-sections. In particular, omega(1c) < omega(k) < omega(1s). We calculate the decrements of the two kink modes and show that they are of the order of decrement of the kink mode of a tube with a circular cross-section. \ud
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Abramowitz, M., & Stegun, I. A. 1964, Handbook of Mathematical Functions (National Bureau of Standards, Washington DC)
    • Aschwanden, M. J., Fletcher, L., Schrijver, C. J., et al. 1999, ApJ, 520, 880
    • Aschwanden, M. J., De Pontieu, B., Schrijver, C. J., et al. 2002, Sol. Phys., 206, 99
    • Bateman, H. 1955, Higher Transcendental Functions, (New York: McGraw-Hill), vol. III
    • Cally, P. S. 1986, Sol. Phys., 103, 277
    • Defouw, R. J. 1976, ApJ, 209, 266
    • Edwin, P. M., & Roberts, B. 1982, Sol. Phys., 76, 239
    • Edwin, P. M., & Roberts, B. 1983, Sol. Phys., 88, 179
    • Goossens, M. 1991, MHD waves and wave heating in non-uniform plasmas, in Advances in Solar System Magnetohydrodynamics, ed. E. R. Priest, & A. W. Hood (Cambridge: Cambridge Univ. Press), 135
    • Goossens, M., & Ruderman, M. S. 1995, Phys. Scripta, T60, 171
    • Goossens, M., Ruderman, M. S., & Hollweg, J. V. 1995, Sol. Phys., 157, 75
    • Goossens, M., Andries, J., & Aschwanden, M. J. 2002, A&A, 394, L39
    • Hollweg, J. V. 1987, ApJ, 312, 880
    • Hollweg, J. V., & Yang, G. 1988, J. Geophys. Res., 93, 5423
    • Korn, G. A., & Korn, T. M. 1961, Mathematical Handbook for Scientists and Engineers (New York: McGraw-Hill)
    • Nakariakov, V. M., Ofman, L., Deluca, E. E., et al. 1999, Nature, 285, 862
    • Ofman, L., & Aschwanden, M. J. 2002, ApJ, 576, L153
    • Roberts, B. 2000, Sol. Phys., 193, 139
    • Ruderman, M. S., & Roberts, B. 2002, ApJ, 577, 475
    • Ruderman, M. S., & Wright, A. N. 2000, Phys. Plasmas, 7, 3515
    • Ruderman, M. S., Tirry, W. J., & Goossens, M. 1995, J. Plasma Phys., 54, 129
    • Ryutov, D. D., & Ryutova, M. P. 1976, Sov. Phys - JETP, 43, 491
    • Sakurai, T., Goossens, M., & Hollweg, J. V. 1991, Sol. Phys., 133, 227
    • Schrijver, C. J., & Brown, D. S. 2000, ApJ, 537, L69
    • Schrijver, C. J., Aschwanden, M. J., & Title, A. M. 2002, Sol. Phys., 206, 69
    • Spruit, H. C. 1982, Sol. Phys., 75, 3
    • Tirry, W. J., & Goossens, M. 1996, ApJ, 471, 501
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article