LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Pellinen-Wannberg, AK; Haggstrom, I; Sanchez, JDC; Plane, JMC; Westman, A (2014)
Publisher: American Geophysical Union
Languages: English
Types: Article
Subjects:
Intensive E region ionization extending up to 140 km altitude and lasting for several hours was observed with the European Incoherent Scatter (EISCAT) UHF radar during the 2002 Leonids meteor shower maximum. The level of global geomagnetic disturbance as well as the local geomagnetic and auroral activity in northern Scandinavia were low during the event. Thus, the ionization cannot be explained by intensive precipitation. The layer was 30–40 km thick, so it cannot be classified as a sporadic E layer which are typically just a few kilometers wide. Incoherent scatter radars have not to date reported any notable meteor shower-related increases in the average background ionization. The 2002 Leonids storm flux, however, was so high that it might have been able to induce such an event. The Chemical Ablation Model is used to estimate deposition rates of individual meteors. The resulting electron production, arising from hyperthermal collisions of ablated atoms with atmospheric molecules, is related to the predicted Leonid flux values and observed ionization on 19 November 2002. The EISCAT Svalbard Radar (ESR) located at some 1000 km north of the UHF site did not observe any excess ionization during the same period. The high-latitude electrodynamic conditions recorded by the SuperDARN radar network show that the ESR was within a strongly drifting convection cell continuously fed by fresh plasma while the UHF radar was outside the polar convection region maintaining the ionization.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Axford, W. I., and C. O. Hines (1961), A unifying theory of high-latitude geophysical phenomena and geomagnetic storms, Can. J. Phys., 39, 1433, doi:10.1139/p61-172.
    • Bilitza, D., and B. W. Reinisch (2008), International reference ionosphere 2007: Improvements and new parameters, Adv. Space Res., 42, 599-609, doi:10.1016/j.asr.2007.07.048.
    • Chau, J. L., and F. Galindo (2008), First definitive observations of meteor shower particles using a high-power large-aperture radar, Icarus, 194, 23-29, doi:10.1016/icar.2007.09.021.
    • Cousins, E. D. P., and S. G. Shepherd (2010), A dynamical model of high-latitude convection derived from SuperDARN plasma drift measurements, J. Geophys. Res., 115, A12329, doi:10.1029/2010JA016017.
    • Cox, R. M., and J. M. C. Plane (1998), An ion-molecule mechanism for the formation of neutral sporadic Na layers, J. Geophys. Res., 103, 6349-6359, doi:10.1029/97JD03376.
    • Fujiwara, Y., M. Ueda, Y. Shiba, M. Sugimoto, M. Kinoshita, C. Shimoda, and T. Nakamura (1998), Meteor luminosity at 160 km altitude from TV observations for bright Leonid meteors, Geophys. Res. Lett., 25, 285-288, doi:10.1029/97GL03766.
    • Grebowsky, J. M., R. A. Goldberg, and W. D. Pesnell (1998), Do meteor showers significantly perturb the ionosphere?, J. Atmos. Sol.Terr. Phys., 60, 607-615, doi:10.1016/S1364-6826(98)00004-2.
    • Greenwald, R. A., et al. (1995), Darn/Superdarn: A global view of the dynamics of high-latitude convection, Space Sci. Rev., 71, 761-796, doi:10.1007/BF00751350.
    • Hedin, A. E. (1991), Extension of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res., 96, 1159-1172, doi:10.1029/90JA02125.
    • Hughes, D. W. (1978), Meteors, in Cosmic Dust, edited by J. M. McDonnel, pp. 123-185, John Wiley, New York.
    • Hunten, D. M., R. P. Turco, and O. B. Toon (1980), Smoke and dust particles of meteoric origin in the mesosphere and stratosphere, J. Atmos. Sci., 37, 1342-1357, doi:10.1175/1520-0469(1980).
    • Jenniskens, P. (2002), Forecast for the upcoming 2002 Leonid storms, paper presented at the 34th COSPAR Scientific Assembly, The Second World Space Congress, held 10-19 October, Houston, Tex.
    • Jenniskens, P. (2006), Meteor Showers and Their Parent Comets, Cambridge Univ. Press, Cambridge, U. K.
    • Kero, J., C. Szasz, T. Nakamura, D. D. Meisel, M. Ueda, Y. Fujiwara, T. Terasawa, H. Miyamoto, and K. Nishimura (2011), First results from the 2009-2010 MU radar head echo observation programme for sporadic and shower meteors: The Orionids 2009, MNRAS, 416, 2550-2559, doi:10.1111/j.1365-2966.2011.19146.x.
    • Koten, P., P. Spurny´, J. BorovicˇKa, S. Evans, A. Elliott, H. Betlem, R. Štork, and K. Jobse (2006), The beginning heights and light curves of high-altitude meteors, Meteorit. Planet. Sci., 41, 1305-1320, doi:10.1111/j.1945-5100.2006.tb00523.x.
    • Koustov, A. V., D. W. Danskin, R. A. Makarevitch, and J. D. Gorin (2005), On the relationship between the velocity of E-region HF echoes and E×B plasma drift, Ann. Geophys., 23, 371-378, doi:10.5194/angeo-23-371-2005.
    • Lebedinets, V. N., and V. B. Shushkova (1970), Meteor ionisation in the E-layer, Planet Space Sci., 18, 1659-1663, doi:10.1016/0032-0633(70)90040-1.
    • Lyytinen, E., M. Nissinen, and T. van Flandern (2001), Improved 2001 Leonid storm predictions from a refined model, WGN: JIMO, 29, 110-118.
    • McNaught, R. H., and D. J. Asher (2002), Leonid dust trail structure and predictions for 2002, WGN, JIMO, 30, 132-143.
    • McNeil, W. J., R. A. Dressler, and E. Murad (2001), Impact of a major meteor storm on Earth's ionosphere: A modeling study, J. Geophys. Res., 106, 10,447-10,466, doi:10.1029/2000JA000381.
    • Pellinen-Wannberg, A. (2001), The high power large aperture radar method for meteor observations, in Proc. of the Meteoroids 2001 Conference, Kiruna, Sweden, vol. 495, edited by B. Warmbein, pp. 443-450, ESA Special Publication, Noordwijk, Netherlands.
    • Pellinen-Wannberg, A., A. Westman, G. Wannberg, and K. Kaila (1998), Meteor fluxes and visual magnitudes from EISCAT radar event rates: A comparison with cross-section based magnitude estimates and optical data, Ann. Geophys., 16, 1475-1485, doi:10.1007/s00585-998-1475-x.
    • Pellinen-Wannberg, A., E. Murad, B. Gustavsson, U. Brändström, C.-F. Enell, C. Roth, I. P. Williams, and Å. Steen (2004), Optical observations of water in Leonid meteor trails, Geophys. Res. Lett., 31, L03812, doi:10.1029/2003GL018785.
    • Pellinen-Wannberg, A., J. D. Carrillo Sánchez, I. Häggström, J. M. C. Plane, and A. Westman (2014), E region ionization enhancement over northern Scandinavia during the 2002 Leonids, Proc. of the URSI XXXIth General Assembly and Scientific Symposium, Beijing, China, 18-23 Aug.
    • Rietmeijer, F. J. M. (2002), Shower meteoroids: Constraints from interplanetary dust particles and Leonid meteors, Earth Moon Planets, 88, 35-58, doi:10.1023/A:1013862627781.
    • Schult, C., G. Stober, J. L. Chau, and R. Latteck (2013), Determination of meteor-head echo trajectories using the interferometric capabilities of MAARSY, Ann. Geophys., 31, 1843-1851, doi:10.5194/angeo-31-1843-2013.
    • Szasz, C., J. Kero, A. Pellinen-Wannberg, J. D. Mathews, N. J. Mitchell, and W. Singer (2004), Latitudinal variations of diurnal meteor rates, Earth Moon Planets, 95, 101-107, doi:10.1007/s11038-005-9007-0.
    • Turunen, T., A. Westman, I. Häggström, and G. Wannberg (2002), High resolution general purpose D-layer experiment for EISCAT incoherent scatter radars using selected set of random codes, Ann. Geophys., 20, 1469-1477, doi:10.5194/angeo-20-1469-2002.
    • Vondrak, T., J. M. C. Plane, S. Broadley, and D. Janches (2008), A chemical model of meteoric ablation, Atmos. Chem. Phys., 8, 7015-7031.
    • Whalley, C. L., and J. M. C. Plane (2010), Meteoric ion layers in the Martian atmosphere, Faraday Discuss., 147, 349-368, doi:10.1039/c003726e.
    • Williams, I. P. (1997), The Leonid meteor shower-Why are there storms but no regular annual activity?, MNRAS, 292, L37-L40.
    • Woodcock, K. R. S., T. Vondrak, S. R. Meech, and J. M. C. Plane (2006), A kinetic study of the reactions FeO+ + O, Fe+ N2 + O, Fe+ O2 + O and FeO+ + CO: Implications for sporadic E layers in the upper atmosphere, Phys. Chem. Chem. Phys., 8, 1812-1821, doi:10.1039/b518155k.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • NSF | Collaborative Research: MSI...
  • NSF | Collaborative Research: The...
  • EC | CODITA

Cite this article