Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Justtanont, K.; Barlow, M. J.; Blommaert, J.; Decin, L.; Kerschbaum, F.; Matsuura, Mikako; Olofsson, H.; Owen, P.; Royer, P.; Swinyard, B.; Teyssier, D.; Waters, L. B. F. M.; Yates, J. (2015)
Publisher: EDP Sciences
Languages: English
Types: Article
Subjects: QB

Classified by OpenAIRE into

arxiv: Astrophysics::Solar and Stellar Astrophysics, Astrophysics::Earth and Planetary Astrophysics, Astrophysics::Cosmology and Extragalactic Astrophysics, Astrophysics::Galaxy Astrophysics
Aims. The late stages of stellar evolution are mainly governed by the mass of the stars. Low- and intermediate-mass stars lose copious amounts of mass during the asymptotic giant branch (AGB) which obscure the central star making it difficult to study the stellar spectra and determine the stellar mass. In this study, we present observational data that can be used to determine lower limits to the stellar mass.\ud Methods. Spectra of nine heavily reddened AGB stars taken by the Herschel Space Observatory display numerous molecular emission lines. The strongest emission lines are due to H2O. We search for the presence of isotopologues of H2O in these objects.\ud Results. We detected the 16O and 17O isotopologues of water in these stars, but lines due to H218O are absent. The lack of 18O is predicted by a scenario where the star has undergone hot-bottom burning which preferentially destroys 18O relative to 16O and 17O. From stellar evolution calculations, this process is thought to occur when the stellar mass is above 5 M⊙ for solar metallicity. Hence, observations of different isotopologues of H2O can be used to help determine the lower limit to the initial stellar mass.\ud Conclusions. From our observations, we deduce that these extreme OH/IR stars are intermediate-mass stars with masses of ≥5 M⊙. Their high mass-loss rates of ~10-4M⊙ yr-1 may affect the enrichment of the interstellar medium and the overall chemical evolution of our Galaxy.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Busso, M., Gallino, R., & Wasserburg, G. J. 1999, ARA&A, 37, 239 Clegg, P. E., Ade, P. A. R., Armand, C., et al. 1996, A&A, 315, L38 de Graauw, T., Helmich, F. P., Phillips, T. G., et al. 2010, A&A, 518, L6 García-Hernández, D. A., García-Lario, P., Plez, B., et al. 2007, A&A, 462, 711 García-Hernández, D. A., Zamora, O., Yagüe, A., et al. 2013, A&A, 555, L3 Groenewegen, M. A. T., Waelkens, C., Barlow, M. J., et al. 2011, A&A, 526, A162
    • Habing, H. J. 1996, A&ARv, 7, 97
    • Herwig, F. 2005, ARA&A, 43, 435
    • Iben, Jr., I., & Renzini, A. 1983, ARA&A, 21, 271
    • Justtanont, K., Skinner, C. J., Tielens, A. G. G. M., Meixner, M., & Baas, F. 1996, ApJ, 456, 337
    • Justtanont, K., Olofsson, G., Dijkstra, C., & Meyer, A. W. 2006, A&A, 450, 1051
    • Justtanont, K., Khouri, T., Maercker, M., et al. 2012, A&A, 537, A144 Justtanont, K., Teyssier, D., Barlow, M. J., et al. 2013, A&A, 556, A101 Karakas, A. I., & Lattanzio, J. C. 2014, PASA, 31, 30
    • Karakas, A. I., García-Hernández, D. A., & Lugaro, M. 2012, ApJ, 751, 8 Kessler, M. F., Steinz, J. A., Anderegg, M. E., et al. 1996, A&A, 315, L27 Lattanzio, J., & Wood, P. R. 2003, in Asymptotic giant branch stars (Berlin, New York: Springer), eds. H. J. Habing, & H. Olofsson, Astron. Astrophysics Lib., 23
    • Lattanzio, J., Frost, C., Cannon, R., & Wood, P. R. 1996, Mem. Soc. Astron. It., 67, 729
    • Lombaert, R., Decin, L., de Koter, A., et al. 2013, A&A, 554, A142 Lugaro, M., Karakas, A. I., Nittler, L. R., et al. 2007, A&A, 461, 657 Nittler, L. R., Gyngard, F., & Zinner, E. 2010, Meteorit. Planet. Sci. Suppl., 73, 5245
    • Ott, S. 2010, in Astronomical Data Analysis Software and Systems XIX, eds. Y. Mizumoto, K.-I. Morita, & M. Ohishi, ASP Conf. Ser., 434, 139 Pilbratt, G. L., Riedinger, J. R., Passvogel, T., et al. 2010, A&A, 518, L1 Sackmann, I.-J., & Boothroyd, A. I. 1992, ApJ, 392, L71
    • Salpeter, E. E. 1955, ApJ, 121, 161
    • Scalo, J. M. 1986, Fund. Cosmic Phys., 11, 1
    • Sylvester, R. J., Barlow, M. J., Nguyen-Q-Rieu, et al. 1997, MNRAS, 291, L42 Wilson, T. L., & Rood, R. 1994, ARA&A, 32, 191
    • Wood, P. R., Habing, H. J., & McGregor, P. J. 1998, A&A, 336, 925 Wouterloot, J. G. A., Henkel, C., Brand, J., & Davis, G. R. 2008, A&A, 487, 237 0
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article