LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Sharp, C
Languages: English
Types: Doctoral thesis
Subjects: built_and_human_env
There is currently a push to increase the proportion of freight traffic that is transported by rail, which is argued to be a safer, more sustainable and more climate friendly means of freight transportation when compared with road or air transportation. This will result in increased noise and vibration from freight railway traffic, the potential impacts of which are not well known. The aim of this research, therefore, is to further the understanding of the human response to freight railway noise and vibration.\ud Data for this research comes from a field study comprising interviews with respondents and measurements of their vibration exposure. A logistic regression model was created and optimised, and is able to accurately classify 96% of these measured railway vibration signals as freight or passenger signals based on two signal properties that quantify the duration and low frequency content of each\ud signal. Exposure-response relationships are then determined using ordinal probit modelling with fixed thresholds and cumulative ordinal logit models. The results indicate that people are able to distinguish between freight and passenger railway vibration, and that the annoyance response due to freight railway vibration is significantly higher than that due to passenger railway vibration, even for equal levels of exposure. To further investigate this disparity in response, a laboratory study was performed in which subjects were exposed to combined noise and vibration from freight and\ud passenger railway traffic. Through the technique of multidimensional scaling, the subjective responses to these stimuli were analysed to investigate the specific attributes\ud of the stimuli that may lead to the difference in human response. The results of this study suggest that the perception of combined railway noise and vibration takes into account not only the exposure magnitude of the noise and vibration stimuli, but also signal properties such as duration, spectral distribution and envelope modulation. These parameters, and in particular the duration parameter,\ud appear to account for the difference in the human response to freight and passenger railway vibration.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 Introduction 1 1.1 General introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Scope of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Novel aspects of work . . . . . . . . . . . . . . . . . . . . . . . . . . 5
    • Arnberg, P. W., Bennerhult, O., and Eberhardt, J. L. (1990). Sleep disturbances caused by vibrations from heavy road tra c. The Journal of the Acoustical Society of America, 88(3):1486{1493.
    • Association of Noise Consultants (2012). Red book: measurement and assessment of groundborne noise and vibration. Fresco, 2nd edition.
    • Backhaus, W., Menzel, R., and Krei l, S. (1987). Multidimensional scaling of color similarity in bees. Biological Cybernetics, 56(5-6):293{304.
    • Basner, M., Babisch, W., Davis, A., Brink, M., Clark, C., Janssen, S., and Stansfeld, S. (2014). Auditory and non-auditory e ects of noise on health. Lancet, 383:1325{1332.
    • Bech, S. and Zacharov, N. (2006). Perceptual audio evaluation - Theory, method and application. John Wiley & Sons, Chichester, UK. 207
    • Bellmann, M. A. (2002). Perception of whole-body vibrations: from basic experiments to e ects of seat and steering-wheel vibrations on the passenger's comfort inside vehicles. PhD thesis, University of Oldenburg.
    • Benson, A. J. and Dilnot, S. (1981). Perception of whole-body linear oscillation. In Proceedings of the United Kingdom Informal Group Meeting on Human Response to Vibration, Edinburgh, UK.
    • Block, H. D. and Marshchak, J. (1959). Random orderings and stochastic theories of responses. Cowles Foundation Discussion Papers, 66.
    • Blumenthal, T. D. (1988). The startle response to acoustic stimuli near startle threshold: e ects of stimulus rise and fall time, duration, and intensity. Psychophysiology, 25(5):607{611.
    • Blumenthal, T. D. and Berg, W. K. (1986). The startle response as an indicator of temporal summation. Perception & Psychophysics, 40(1):62{68.
    • Blumenthal, T. D., Cuthbert, B. N., Filion, D. L., Hackley, S., Lipp, O. V., and van Boxtel, A. (2005). Committee report: guidelines for human startle eyeblink electromyographic studies. Psychophysiology, 42(1):1{15.
    • Blumenthal, T. D. and Goode, C. T. (1991). The startle eyeblink response to low intensity acoustic stimuli. Psychophysiology, 28(3):296{306.
    • Borg, I. and Groenen, P. J. F. (2005). Modern multidimensional scaling: Theory and applications. Springer, New York, NY, 2nd edition.
    • Bradley, R. A. (1954). Rank analysis of incomplete block designs: II. Additional tables for the method of paired comparisons. Biometrika, 41(3):502{537.
    • Bradley, R. A. (1955). Rank analysis of incomplete block designs: III. Some largesample results on estimation and power for a method of paired comparisons. Biometrika, 42(3):450{470.
    • Bradley, R. A. and Terry, M. E. (1952). Rank analysis of incomplete block designs: I. The method of paired comparisons. Biometrika, 39(3/4):324{345.
    • British Standards Institution (1998). BS 6840-13:1998, IEC 60268-13:1998 Sound system equipment - part 13: listening tests on loudspeakers.
    • British Standards Institution (2005). BS EN ISO 8041:2005 Human response to vibration { measuring instrumentation.
    • British Standards Institution (2008). BS 6472-1:2008 Guide to evaluation of human exposure to vibration in buildings - part 1: vibration sources other than blasting.
    • Brown, J. C. (1999). Computer identi cation of musical instruments using pattern recognition with cepstral coe cients as features. The Journal of the Acoustical Society of America, 105(3):1933{1941.
    • Brown, J. C. and Smaragdis, P. (2009). Hidden Markov and Gaussian mixture models for automatic call classi cation. The Journal of the Acoustical Society of America, 125(6):EL221{EL224.
    • Brown, J. C., Smaragdis, P., and Nousek-McGregor, A. (2010). Automatic identi cation of individual killer whales. The Journal of the Acoustical Society of America, 128(3):EL93{EL98.
    • Carroll, J. D. and Chang, J.-J. (1970). Analysis of individual di erences in multidimensional scaling via an n-way generalization of \Eckart-Young" decomposition. Psychometrika, 35(3):283{319.
    • Clark, C. and Stansfeld, S. A. (2007). The e ect of transportation noise on health and cognitive development: A review of recent evidence. International Journal of Comparative Psychology, 20:145{158.
    • Commission of the European Communities (2001). White Paper - European transport policy for 2010: time to decide.
    • Coombs, C. H. (1960). A theory of data. The Pyschological Review, 67(3):143{159.
    • Corbridge, C. and Gri n, M. J. (1986). Vibration and comfort: vertical and lateral motion in the range 0.5 to 5.0 Hz. Ergonomics, 29:249{272.
    • Corradino, C. (1990). Proximity structure in a captive colony of Japanese monkeys (Macaca fuscata fuscata): an application of multidimensional scaling. Primates, 31:351{362.
    • Cox, T. F. and Cox, M. A. A. (2001). Multidimensional scaling. Chapman & Hall/CRC, Boca Raton, FL, 2nd edition.
    • Cycling '74 (2013). Max, version 6.1.6. San Francisco, CA: Cycling '74.
    • David, H. A. (1988). The method of paired comparisons. C. Gri n, London, UK, 2nd edition.
    • De Jong, R. G. (1979). A Dutch study on railroad tra c noise. Journal of Sound and Vibration, 66(3):497{502.
    • De Jong, R. G. and Miedema, H. M. E. (1996). Is freight tra c noise more annoying than passenger tra c noise? Journal of Sound and Vibration, 193(1):35{38.
    • De Leeuw, J. and Heiser, W. J. (1980). Multidimensional scaling with restrictions on the con gurations. In Krishnaiah, P. R., editor, Multivariate analysis, pages 501{522. North-Holland Publishing Company, Amsterdam, Netherlands.
    • Dupuis, H., Hartung, E., and Louda, L. (1972b). The e ect of random vibrations of a limited frequeny band compared with sinusoidal vibrations, on human beings. Library translation 1603. Royal Aircraft Establishment, Farnborough, UK.
    • Dupuis, H., Hartung, E., and Louda, L. (1972c). Vergleich regelloser schwingungen eines begrenzten frequenzbereiches mit sinusformigen schwingungen hinsichtlich der einwirkung auf den menschen. Ergonomics, 15:237{265.
    • Eldick Thieme, H. C. A. V. (1961). Passenger riding comfort criteria and methods of analysing ride and vibration data. In Proceedings of the Society of Automotive Engineers International Congress, Detroit, MI.
    • Elmenhorst, E.-M., Pennig, S., Rolny, V., Quehl, J., Mueller, U., Maa , H., and Basner, M. (2012). Examining nocturnal railway noise and aircraft noise in the eld: sleep, psychomotor performance, and annoyance. The Science of the total environment, 424:48{56.
    • Engeldrum, P. G. (2000). Psychometric scaling: A toolkit for imaging systems development. Imcotek Press, Winchester, MA.
    • Fidell, S., Barber, D. S., and Schultz, T. J. (1991). Updating a dosage-e ect relationship for the prevalence of annoyance due to general transportation noise. The Journal of the Acoustical Society of America, 89(1):221{233.
    • Fidell, S., Mestre, V., Schomer, P., Berry, B., Gjestland, T., Vallet, M., and Reid, T. (2011). A rst-principles model for estimating the prevalence of annoyance with aircraft noise exposure. The Journal of the Acoustical Society of America, 130(2):791{806.
    • Fields, J. M. (1979). Railway noise and vibration annoyance in residential areas. Journal of Sound and Vibration, 66(3):445{458.
    • Fields, J. M., De Jong, R. G., Gjestland, T., Flindell, I. H., Job, R. F. S., Kurra, S., Lercher, P., Vallet, M., Yano, T., Guski, R., Felscher-Suhr, U., and Schumer, R. (2001). Standardized general-purpose noise reaction questions for community noise surveys: research and a recommendation. Journal of Sound and Vibration, 242(4):641{679.
    • Fields, J. M. and Walker, J. G. (1982). The response to railway noise in residential areas in Great Britain. Journal of Sound and Vibration, 85(2):177{255.
    • Gidlof-Gunnarsson, A., O gren, M., Jerson, T., and Ohrstrom, E. (2012). Railway noise annoyance and the importance of number of trains, ground vibration, and building situational factors. Noise & health, 14(59):190{201.
    • Grey, J. M. (1977). Multidimensional perceptual scaling of musical timbres. The Journal of the Acoustical Society of America, 61(5):1270{1277.
    • Grey, J. M. and Gordon, J. W. (1978). Perceptual e ects of spectral modi cations on musical timbres. The Journal of the Acoustical Society of America, 63(5):1493{1500.
    • Gri n, M. J. (1976). Subjective equivalence of sinusoidal and random whole-body vibration. The Journal of the Acoustical Society of America, 60(5):1140{1145.
    • Gri n, M. J. (1996). Handbook of human vibration. 988 p. Academic Press, London, UK.
    • Gri n, M. J. and Whitham, E. M. (1980a). Discomfort produced by impulsive whole-body vibration. The Journal of the Acoustical Society of America, 68(5):1277{1284.
    • Gri n, M. J. and Whitham, E. M. (1980b). Time dependency of whole-body vibration discomfort. The Journal of the Acoustical Society of America, 68(5):1522{ 1523.
    • Gri n, M. J., Whitham, E. M., and Parsons, K. C. (1982). Vibration and comfort: I. Translational seat vibration. Ergonomics, 25:603{630.
    • Groothuis-Oudshoorn, C. G. M. and Miedema, H. M. E. (2006). Multilevel grouped regression for analyzing self-reported health in relation to environmental factors: the model and its application. Biometrical Journal, 48(1):67{82.
    • Gulliksen, H. (1956). A least squares solution for paired comparisons with incomplete data. Psychometrika, 21:125{134.
    • Guski, R., Felscher-Suhr, U., and Schuemer, R. (1999). The concept of noise annoyance: how international experts see it. Journal of Sound and Vibration, 223(4):513{527.
    • Hiramatsu, K. and Gri n, M. J. (1984). Predicting the subjective response to nonsteady vibration based on the summation of subjective magnitude. The Journal of the Acoustical Society of America, 76(4):1080{1089.
    • Horan, C. B. (1969). Multidimensional scaling: combining observations when individuals have di erent perceptual structures. Psychometrika, 34(2):139{165.
    • Hosmer, D. W. and Lemeshow, S. (1989). Applied logistic regression (Wiley series in probability and statistics). John Wiley & Sons, New York, NY.
    • Howarth, H. V. C. and Gri n, M. J. (1988a). Human response to simulated intermittent railway-induced building vibration. Journal of Sound and Vibration, 120(2):413{420.
    • Howarth, H. V. C. and Gri n, M. J. (1988b). The frequency dependence of subjective reaction to vertical and horizontal whole-body vibration at low magnitudes. The Journal of the Acoustical Society of America, 83(4):1406{1413.
    • Howarth, H. V. C. and Gri n, M. J. (1990). Subjective response to combined noise and vibration: summation and interaction e ects. Journal of Sound and Vibration, 143(3):443{454.
    • Howarth, H. V. C. and Gri n, M. J. (1991). The annoyance caused by simultaneous noise and vibration from railways. The Journal of the Acoustical Society of America, 89(5):2317{2323.
    • Huang, Y. and Gri n, M. J. (2014). The relative discomfort of noise and vibration: e ects of stimulus duration. Ergonomics, 57(8):1244{1255.
    • Job, R. F. S. (1988). Community response to noise: a review of factors in uencing the relationship between noise exposure and reaction. The Journal of the Acoustical Society of America, 83(3):991{1001.
    • Jones, A. J. and Saunders, D. J. (1972). Equal comfort contours for whole body vertical, pulsed sinusoidal vibration. Journal of Sound and Vibration, 23(1):1{ 14.
    • Jones, A. J. and Saunders, D. J. (1974). A scale of human reaction to whole body, vertical, sinusoidal vibration. Journal of Sound and Vibration, 35:503{520.
    • Kandel, E. R., Schwartz, J. H., and Jessell, T. M. (2000). Principles of neural science. McGraw-Hill, New York, NY, 4th edition.
    • Kl boe, R., O hrstrom, E., Turunen-Rise, I. H., Bendtsen, H., and Nykanen, H. (2003a). Vibration in dwellings from road and rail tra c | part III : towards a common methodology for socio-vibrational surveys. Applied Acoustics, 64:111{ 120.
    • Landstrom, U., Lundstrom, R., and Strandberg, U.-K. (1983a). Perceptionfor horisontella vibrationer i staende stallning (Perception of horizontal vibrations in standing posture). Undersokningsrapport 1983:40. Umea: Arbetarskyddsstyrelsen.
    • Landstrom, U., Lundstrom, R., and Strandberg, U.-K. (1983b). Perceptionforhallanden avseende helkroppsvibrationer i staende stallning (Perception of wholebody vibration in standing posture). Undersokningsrapport 1983:17. Stockholm: Arbetarskyddsstyrelsen.
    • Lapointe, F.-J. and Legendre, P. (1994). A classi cation of pure malt scotch whiskies. Applied Statistics, 43(1):237{257.
    • Leatherwood, J. D. and Dempsey, T. K. (1976). Psychophysical relationships characterizing human response to whole-body sinusoidal vertical vibration. NASA Technical Note TN D-8188.
    • Long, J. S. (1997). Regression models for categorical and limited dependent variables. Sage Publications, Inc, Thousand Oaks, CA.
    • Luce, R. D. and Suppes, P. (1965). Preference, utility, and subjective probability. In Luce, R. D., Bush, R. R., and Galanter, E. H., editors, Handbook of mathematical psychology, vol. 3, pages 249{410. Wiley, New York, NY.
    • Madshus, C., Bessason, B., and Harvik, L. (1996). Prediction model for low frequency vibration from high speed railways on soft ground. Journal of Sound and Vibration, 193(1):195{203.
    • Magid, E. B., Coermann, R. R., and Ziegenruecker, G. H. (1960). Human tolerance to whole body sinusoidal vibration: short-time, one-minute and three-minute studies. Aerospace Medicine, 31:915{924.
    • Matsumoto, Y. and Gri n, M. J. (2002). E ect of muscle tension on non-linearities in the apparent masses of seated subjects exposed to vertical whole-body vibration. Journal of Sound and Vibration, 253(1):77{92.
    • McAdams, S., Winsberg, S., Donnadieu, S., De Soete, G., and Krimpho , J. (1995). Perceptual scaling of synthesized musical timbres: common dimensions, speci cities, and latent subject classes. Psychological Research, 58(3):177{192.
    • McCullagh, P. and Nelder, J. A. (1989). Generalized linear models. Springer, London, UK, 2nd edition.
    • McKay, J. R. (1971). Human perception of whole body vibration. Memorandum No. 435. Institute of Sound and Vibration Research, University of Southampton.
    • Miedema, H. M. E. and Oudshoorn, C. G. M. (2001). Annoyance from transportation noise: relationships with exposure metrics DNL and DENL and their con dence intervals. Environmental Health Perspectives, 109(4):409{416.
    • Miedema, H. M. E. and Vos, H. (1998). Exposure-response relationships for transportation noise. The Journal of the Acoustical Society of America, 104(6):3432{ 3445.
    • Nawayseh, N. and Gri n, M. J. (2005). Non-linear dual-axis biodynamic response to fore-and-aft whole-body vibration. Journal of Sound and Vibration, 282:831{ 862.
    • Notess, C. B. (1963). Flexible airplanes, gusts, crew, a triangle. Full-scale Division Memorandum No. 343. Cornell Aeronautical Laboratory Inc., Ithaca, NY.
    • Oborne, D. J. and Boarer, P. A. (1982). Subjective response to whole body vibration: the e ects of posture. Ergonomics, 25:673{681.
    • Parizet, E., Guyader, E., and Nosulenko, V. (2008). Analysis of car door closing sound quality. Applied Acoustics, 69(1):12{22.
    • Parsons, K. C. and Gri n, M. J. (1988). Whole-body vibration perception thresholds. Journal of Sound and Vibration, 121:237{258.
    • Parsons, K. C., Gri n, M. J., and Whitham, E. M. (1982). Vibration and comfort. III. Translational vibration of the feet and back. Ergonomics, 25:705{719.
    • Paulsen, R. and Kastka, J. (1995). E ects of combined noise and vibration on annoyance. Journal of Sound and Vibration, 181(2):295{314.
    • Pennig, S., Quehl, J., Mueller, U., Rolny, V., Maass, H., Basner, M., and Elmenhorst, E.-M. (2012). Annoyance and self-reported sleep disturbance due to night-time railway noise examined in the eld. The Journal of the Acoustical Society of America, 132(5):3109{3117.
    • Peris, E., Woodcock, J., Sica, G., Moorhouse, A. T., and Waddington, D. C. (2012). Annoyance due to railway vibration at di erent times of the day. The Journal of the Acoustical Society of America, 131(2):EL191{EL196.
    • Peris, E., Woodcock, J., Sica, G., Sharp, C., Moorhouse, A. T., and Waddington, D. C. (2014). E ect of situational, attitudinal and demographic factors on railway vibration annoyance in residential areas. The Journal of the Acoustical Society of America, 135(1):194{204.
    • Purves, D., Augustine, G. J., Fitzpatrick, D., Katz, L. C., LaMantia, A. S., McNamara, J. O., and Williams, S. M., editors (2001). Neuroscience. Sinauer Associates, Sunderland, MA, 2nd edition.
    • Putnam, L. E. and Roth, W. T. (1990). E ects of stimulus repetition, duration, and rise time on startle blink and automatically elicited P300. Psychophysiology, 27(3):275{97.
    • Reiher, H. and Meister, F. J. (1931). The senstiveness of the human body to vibrations (Emp ndlichkeit des menschen gegen erschutterung). Forschung (VDI) 2: 381-386. Translation, Report No. F-TS-616-RE (1946). Headquarters Air Material Command, Wright Field, Dayton, OH.
    • Rice, C. G. and Izumi, K. (1984). Annoyance due to combinations of noises. In Proceedings of the Institute of Acoustics Spring Conference.
    • Shamir, L., Yerby, C., Simpson, R., von Benda-Beckmann, A. M., Tyack, P., Samarra, F., Miller, P., and Wallin, J. (2014). Classi cation of large acoustic datasets using machine learning and crowdsourcing: application to whale calls. The Journal of the Acoustical Society of America, 135(2):953{962.
    • Stevens, S. S. (1975). Psychophysics: introduction to its perceptual, neural, and social prospects. John Wiley & Sons, New York, NY.
    • Swedish Standards Institute (1992). SS 460 48 61:1992 Vibration oct stot { matning och riktvarden for bedomning av komfort i byggnader.
    • Taylor, S. M. (1982). A comparison of models to predict annoyance reactions to noise from mixed sources. Journal of Sound and Vibration, 81(1):123{138.
    • Thompson, D. (2009). Railway noise and vibration: mechanisms, modelling and means of control. Elsevier, Oxford, UK.
    • Thurstone, L. L. (1927). A law of comparative judgement. Psychology Review, 34:273{276.
    • Waddington, D. C., Woodcock, J., Peris, E., Condie, J., Sica, G., Moorhouse, A. T., and Steele, A. (2014). Human response to vibration in residential environments. The Journal of the Acoustical Society of America, 135(1):182{193.
    • Woodcock, J., Moorhouse, A. T., and Waddington, D. C. (2014a). A multidimensional evaluation of the perception and annoyance caused by railway induced groundborne vibration. Acta Acustica United with Acustica, 100(4):614{627.
    • Woodcock, J. S., Peris, E., Moorhouse, A. T., and Waddington, D. C. (2014b). Guidance document for the evaluation of railway vibration. CargoVibes Deliverable D1.5.
    • Woodru , H. J. and Gri n, M. J. (1987). A survey of the e ect of railway-induced vibration on the community. ISVR Technical Report 160.
    • Wyllie, I. H. and Gri n, M. J. (2007). Discomfort from sinusoidal oscillation in the roll and lateral axes at frequencies between 0.2 and 1.6 Hz. The Journal of the Acoustical Society of America, 121(5):2644{2654.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article