Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hudspeth , Jessica M.; Kvashnina , Kristina O.; Kimber , Simon A. J.; Mitchell , Edward P. (2015)
Publisher: Institut Français du Pétrole
Journal: Oil & Gas Science and Technology
Languages: English
Types: Article
Subjects: Q1, TP1-1185, HD9502-9502.5, Chemical technology, Energy industries. Energy policy. Fuel trade, [ CHIM ] Chemical Sciences
International audience; Optimising the properties of catalysts for industrial processes requires a detailed knowledge of their structure and properties on multiple length scales. Synchrotron light sources are ideal tools for characterising catalyts for industrial R&D, providing data with high temporal and spatial resolution, under realistic operating conditions, in a non-destructive way. Here, we describe the different synchrotron techniques that can be employed to gain a wealth of complementary information, and highlight recent developments that have allowed remarkable insight to be gained into working catalytic systems. These techniques have the potential to guide future industrial catalyst design
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 Iglesias-Juez A., Beale A.M., O'Brien M.G., Newton M.A., Bras W., Weckhuysen B.M. (2009) Multi-Technique In situ Approach Towards the Study of Catalytic Solids at Work Using Synchrotron Radiation, Synchrotron Radiation News 22, 1, 22-30.
    • 2 Bell A.T. (2003) The Impact of Nanoscience on Heterogeneous Catalysis, Science 299, 5613, 1688-1691.
    • 3 Li Y., Somorjai G.A. (2010) Nanoscale Advances in Catalysis and Energy Applications, Nano Letters 10, 7, 2289-2295.
    • 4 Zäch M., Hägglund C., Chakarov D., Kasemo B.B. (2006) Nanoscience and nanotechnology for advanced energy systems, Current Opinion in Solid State and Materials Science 10, 3-4, 132-143.
    • 5 Hargreaves J.S.J. (2005) Powder X-ray diffraction and heterogeneous catalysis, Crystallography Reviews 11, 1, 21-34.
    • 6 Rodriguez J.A., Hanson J.C., Wen W., Wang X., Brito J.L., Martínez-Arias A., Fernández-García M. (2009) In-situ characterization of water-gas shift catalysts using time-resolved X-ray diffraction, Catalysis Today 145, 3-4, 188-194.
    • 7 du Plessis H.E., Forbes R.P., Barnard W., Erasmus W.J, Steuwer A. (2013) In situ reduction study of cobalt model Fischer-Tropsch synthesis catalysts, Phys. Chem. Chem. Phys. 15, 11640-11645.
    • 8 Wragg D.S., Akporiaye D., Fjellvåg H. (2011) Direct observation of catalyst behaviour under real working conditions with X-ray diffraction: Comparing SAPO-18 and SAPO-34 methanol to olefin catalysts, Journal of Catalysis 279, 2, 397-402.
    • 9 Newton M.A., Di Michiel M., Kubacka A, Fernández-García M. (2010) Combining Time-Resolved Hard X-ray Diffraction and Diffuse Reflectance Infrared Spectroscopy To Illuminate CO Dissociation and Transient Carbon Storage by Supported Pd Nanoparticles during CO/NO Cycling, Journal of the American Chemical Society 132, 13, 4540-4541.
    • 10 Hendriksen B.L.M., Ackermann M.D., van Rijn R., Stoltz D., Popa I., Balmes O., Resta A., Wermeille D., Felici R., Ferrer S., Frenken J.W.M. (2010) The role of steps in surface catalysis and reaction oscillations, Nat. Chem. 2, 9, 730-734.
    • 11 Farkas A., Zalewska-Wierzbicka K., Bachmann C., Goritzka J., Langsdorf D., Balmes O., Janek J., Over H. (2013) High Pressure Carbon Monoxide Oxidation over Platinum (111), The Journal of Physical Chemistry C 117, 19, 9932-9942.
    • 12 Balmes O., van Rijn R., Wermeille D., Resta A., Petit L., Isern H., Dufrane T., Felici R. (2009) The ID03 surface diffraction beamline for in-situ and real-time X-ray investigations of catalytic reactions at surfaces, Catalysis Today 145, 3-4, 220-226.
    • 13 Jacques S.D.M., Di Marco M., Beale A.M., Sochi T., O'Brien M.G., Espinosa-Alonso L., Weckhuysen B.M., Barnes P. (2011) Dynamic X-Ray Diffraction Computed Tomography Reveals Real-Time Insight into Catalyst Active Phase Evolution, Angewandte Chemie International Edition 50, 43, 10148-10152.
    • 14 O'Brien M.G., Jacques S.D.M., Di Michiel M., Barnes P., Weckhuysen B.M., Beale A.M. (2012) Active phase evolution in single Ni/Al2 O3 methanation catalyst bodies studied in real time using combined l-XRD-CT and l-absorption-CT, Chem. Sci. 3, 509-523.
    • 15 Beale A.M., Gibson E.K., O'Brian M.G., Jacques S.D., Cernik R.J., Di Michiel M., Cobden P.D., Pirgon-Galin Ö., van de Water L., Watson M.J., Weckhuysen B.M. (2014) Chemical imaging of the sulfur-induced deactivation of Cu/ZnO catalyst bodies, Journal of Catalysis 314, 94-100.
    • 16 Billinge S.J. (2008) Nanoscale structural order from the atomic pair distribution function (PDF): There's plenty of room in the middle, Journal of Solid State Chemistry 181, 7, 1695-1700.
    • 17 Chupas P.J., Chapman K.W., Chen H., Grey C.P. (2009) Application of high-energy X-rays and Pair-Distribution-Function analysis to nano-scale structural studies in catalysis, Catalysis Today 145, 3-4, 213-219.
    • 18 Newton M.A., Chapman K.W., Thompsett D., Chupas P.J. (2012) Chasing Changing Nanoparticles with Time-Resolved Pair Distribution Function Methods, Journal of the American Chemical Society 134, 11, 5036-5039.
    • 19 Du P., Kokhan O., Chapman K.W., Chupas P.J., Tiede D.M. (2012) Elucidating the Domain Structure of the Cobalt Oxide Water Splitting Catalyst by X-ray Pair Distribution Function Analysis, Journal of the American Chemical Society 134, 27, 11096-11099. PMID: 22720737.
    • 20 Jacques S.D.M., Di Michiel M., Kimber S.A.J., Yang X., Cernik R.J., Beale A.M., Billinge S.J.L. (2013) Pair distribution function computed tomography, Nature Communications 4, 2536.
    • 21 Bordiga S., Groppo E., Agostini G., van Bokhoven J.A., Lamberti C. (2013) Reactivity of Surface Species in Heterogeneous Catalysts Probed by In situ X-ray Absorption Techniques, Chemical Reviews 113, 3, 1736-1850.
    • 22 Grunwaldt J.-D., Caravati M., Hannemann S., Baiker A. (2004) X-ray absorption spectroscopy under reaction conditions: suitability of different reaction cells for combined catalyst characterization, time-resolved studies, Phys. Chem. Chem. Phys. 6, 3037-3047.
    • 23 Nagai Y., Dohmae K., Ikeda Y., Takagi N., Tanabe T., Hara N., Guilera G., Pascarelli S., Newton M.A., Kuno O., Jiang H., Shinjoh H., Matsumoto S. (2008) In situ Redispersion of Platinum Autoexhaust Catalysts: An On-Line Approach to Increasing Catalyst Lifetimes? Angewandte Chemie 120, 48, 9443-9446.
    • 24 Cafun J.-D., Kvashnina K.O., Casals E., Puntes V.F., Glatzel P. (2013) Absence of Ce3+ Sites in Chemically Active Colloidal Ceria Nanoparticles, ACS Nano 7, 12, 10726-10732.
    • 25 Harris W.M., Lombardo J.J., Nelson G.J., Lai B., Wang S., Vila-Comamala J., Liu M., Liu M., Chiu W.K.S. (2014) Three-Dimensional Microstructural Imaging of Sulfur Poisoning-Induced Degradation in a Ni-YSZ Anode of Solid Oxide Fuel Cells, Sci. Rep. 4, 5246.
    • 26 Jonesa K., Fengb H., Lanzirottic A., Mahajan D. (2005) Mapping metal catalysts using synchrotron computed microtomography (CMT) and micro-X-ray fluorescence (XRF), Topics in Catalysis 32, 3-4, 263-272.
    • 27 Hill A.H. (2013) A new gas system for automated in situ powder diffraction studies at the European Synchrotron Radiation Facility, Journal of Applied Crystallography 46, 2, 570-572.
    • 28 Andrieux J., Chabert C., Mauro A., Vitoux H., Gorges B., Buslaps T., Honkimäki V. (2014) A high-pressure and hightemperature gas-loading system for the study of conventional to real industrial sized samples in catalysed gas/solid and liquid/solid reactions, Journal of Applied Crystallography 47, 1, 245-255.
    • 29 van Beek W., Safonova O.V., Wiker G., Emerich H. (2011) SNBL, a dedicated beamline for combined in situ X-ray diffraction, X-ray absorption and Raman scattering experiments, Phase Transitions 84, 8, 726-732.
    • 30 Mitchell E.P., Boller E., Gordon E.J., Leonard G.A., Monaco S. (2011) The Industrial Research Program at the European Synchrotron Radiation Facility: The Past, the Present, and Challenges for the Future, Synchrotron Radiation News 24, 6, 18-23.
    • 31 Suzuki, M. (2014) Recent Trends in Industrial Applications, Synchrotron Radiation News 27, 3, 2.
    • 32 Ackland R.G., Garrod R.I., Richardson J.F. (1950) Summarized Proceedings of Conference on “X-Rays in Industry” - Melbourne, Australia, November, 1949, British J. Appl. Phys. 1, 9, 217-224.
    • Manuscript submitted in October 2014 Manuscript accepted in November 2014 Published online in March 2015
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.