Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lear, Caroline Helen; Mawbey, Elaine M.; Rosenthal, Yair (2010)
Publisher: American Geophysical Union
Languages: English
Types: Article
Subjects: QE, GC
The sensitivities of benthic foraminiferal Mg/Ca and Li/Ca to bottom water temperature and carbonate saturation state have recently been assessed. Here we present a new approach that uses paired Mg/Ca and Li/Ca records to calculate simultaneous changes in temperature and saturation state. Using previously published records, we first use this approach to document a cooling of deep ocean waters associated with the establishment of the Antarctic ice sheet at the Eocene-Oligocene climate transition. We then apply this approach to new records of the Middle Miocene Climate Transition from ODP Site 761 to estimate variations in bottom water temperature and the oxygen isotopic composition of seawater. We estimate that the oxygen isotopic composition of seawater varied by ∼1‰ between the deglacial extreme of the Miocene Climatic Optimum and the glacial maximum following the Middle Miocene Climate Transition, indicating large amplitude variations in ice volume. However, the longer-term change between 15.3 and 12.5 Ma is marked by a ∼1°C cooling of deep waters, and an increase in the oxygen isotopic composition of seawater of ∼0.6‰. We find that bottom water saturation state increased in the lead up to the Middle Miocene Climate Transition and decreased shortly after. This supports decreasing pCO2 as a driver for global cooling and ice sheet expansion, in agreement with existing boron isotope and leaf stomatal index CO2 records but in contrast to the published alkenone CO2 records.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Adkins, J. F., K. McIntyre, and D. P. Schrag (2002), The salinity, temperature, and d18O of the glacial deep ocean, Science, 298, 1769-1773, doi:10.1126/science.1076252.
    • Billups, K., and D. P. Schrag (2002), Paleotemperatures and ice volume of the past 27 Myr revisited with paired Mg/Ca and 18O/16O measurements on benthic foraminifera, Paleoceanography, 17(1), 1003, doi:10.1029/ 2000PA000567.
    • Billups, K., and D. P. Schrag (2003), Application of benthic foraminiferal Mg/Ca ratios to questions of Cenozoic climate change, Earth Planet. Sci. Lett., 209, 181-195, doi:10.1016/ S0012-821X(03)00067-0.
    • Boyle, E. A., and L. D. Keigwin (1985), Comparison of Atlantic and Pacific paleochemical records for the last 250,000 years: Changes in deep ocean circulation and chemical inventories, Earth Planet. Sci. Lett., 76, 135-150, doi:10.1016/0012-821X(85)90154-2.
    • Broecker, W. S., and T.‐H. Peng (1982), Tracers in the Sea, Eldigo, Palisades, N. Y.
    • Bryan, S. P., and T. M. Marchitto (2008), Mg/Ca-temperature proxy in benthic foraminifera: New calibrations from the Florida Straits and a hypothesis regarding Mg/Li, Paleoceanography, 23, PA2220, doi:10.1029/ 2007PA001553.
    • Burton, K. W., and D. Vance (2000), Glacialinterglacial variations in the neodymium isotope composition of seawater in the Bay of Bengal recorded by planktonic foraminifera, Earth Planet. Sci. Lett., 176, 425-441, doi:10.1016/S0012-821X(00)00011-X.
    • Coxall, H. K., P. A. Wilson, H. Pälike, C. H. Lear, and J. Backman (2005), Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean, Nature, 433, 53-57, doi:10.1038/nature03135.
    • Curry, W. B., and T. M. Marchitto (2008), A secondary ionization mass spectrometry calibration of Cibicidoides pachyderma Mg/Ca with temperature, Geochem. Geophys. Geosyst., 9, Q04009, doi:10.1029/2007GC001620.
    • DeConto, R. M., D. Pollard, P. A. Wilson, H. Pälike, C. H. Lear, and M. Pagani (2008), Thresholds for Cenozoic bipolar glaciation, Nature, 455, 652-656, doi:10.1038/nature07337.
    • Elderfield, H., J. Yu, P. Anand, T. Kiefer, and B. Nyland (2006), Calibrations for benthic foraminiferal Mg/Ca paleothermometry and the carbonate ion hypothesis, Earth Planet. Sci. Lett., 250, 633-649, doi:10.1016/ j.epsl.2006.07.041.
    • Fairbanks, R. G., and R. K. Matthews (1978), The marine oxygen isotope record in Pleistocene coral, Barbados, West Indies, Quat. Res., 10, 181-196, doi:10.1016/0033-5894 (78)90100-X.
    • Flower, B. P., and J. P. Kennett (1993), Relations between Monterey Formation deposition and middle Miocene global cooling: Naples Beach section, Calif., Geology, 21, 877-880, doi:10.1130/0091-7613(1993)021<0877: RBMFDA>2.3.CO;2.
    • Flower, B. P., and J. P. Kennett (1994), The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling, Palaeogeogr. Palaeoclimatol. Palaeoecol., 108, 537-555, doi:10.1016/0031-0182(94)90251-8.
    • Griffith, E., A. Paytan, K. Caldeira, T. D. Bullen, and E. Thomas (2008), A dynamic marine calcium cycle during the past 28 million years, Science, 322, 1671-1674, doi:10.1126/science.1163614.
    • Hall, J. M., and L. H. Chan (2004), Li/Ca in multiple species of benthic and planktonic foraminifera: Thermocline, latitudinal, and glacial‐interglacial variation, Geochim. Cosmochim. Acta, 68, 529-545, doi:10.1016/S0016- 7037(03)00451-4.
    • Haq, B. U., J. Hardenbol, and P. R. Vail (1987), Chronology of fluctuating sea levels since the Triassic, Science, 235, 1156-1167, doi:10.1126/ science.235.4793.1156.
    • Healey, S. L., R. C. Thunell, and B. H. Corliss (2008), The Mg/Ca‐temperature relationship of benthic foraminiferal calcite: New coretop calibrations in the <4°C temperature range, Earth Planet. Sci. Lett., 272, 523-530, doi:10.1016/j.epsl.2008.05.023.
    • Holbourn, A., W. Kuhnt, J. A. Simo, and Q. Li (2004), Middle Miocene isotope stratigraphy and paleoceanographic evolution of the northwest and southwest Australian margins (Wombat Plateau and Great Australian Bight), Palaeogeogr. Palaeoclimatol. Palaeoecol., 208, 1-22, doi:10.1016/j.palaeo.2004.02.003.
    • Hsü, K. J., J. McKenzie, H. Oberhänsli, and R. C. Wright (1984), South Atlantic Cenozoic paleoceanography, Initial Rep. Deep Sea Drill. Proj., 73, 771-785.
    • John, C. M., G. D. Karner, and M. Mutti (2004), d18O and Marion Plateau backstripping: Combining two approaches to constrain late middle Miocene eustatic amplitude, Geology, 32, 829-832, doi:10.1130/G20580.1.
    • Jordan, K. A. (2008), Evaluating carbonate saturation effects on magnesium calcium core top calibration in benthic foraminifera, M.Sc. thesis, Rutgers, State Univ. of N. J., New Brunswick, N. J.
    • Katz, M. E., K. G. Miller, J. D. Wright, B. S. Wade, J. V. Browning, B. S. Cramer, and Y. Rosenthal (2008), Stepwise transition from the Eocene greenhouse to the Oligocene icehouse, Nat. Geosci., 1, 329-334, doi:10.1038/ ngeo179.
    • Kominz, M. A., J. V. Browning, K. G. Miller, P. J. Sugarman, S. Mizintseva, and C. R. Scotese (2008), Late Cretaceous to Miocene sea‐level estimates from the New Jersey and Delaware coastal plain coreholes: An error analysis, Basin Res., 20, 211-226, doi:10.1111/j.1365- 2117.2008.00354.x.
    • Kürschner, W. M., Z. Kvacek, and D. L. Dilcher (2008), The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems, Proc. Natl. Acad. Sci. U. S. A., 105, 449-453, doi:10.1073/pnas.0708588105.
    • Langebroek, P. M., A. Paul, and M. Schulz (2010), Simulating the sea level imprint on marine oxygen isotope records during the middle Miocene using an ice sheet-climate model, Paleoceanography, 25, PA4203, doi:10.1029/2008PA001704.
    • Lear, C. H., and Y. Rosenthal (2006), Benthic foraminiferal Li/Ca: Insights into Cenozoic seawater carbonate saturation state, Geology, 34, 985-988, doi:10.1130/G22792A.1.
    • Lear, C. H., H. Elderfield, and P. A. Wilson (2000), Cenozoic deep‐sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite, Science, 287, 269-272, doi:10.1126/science.287.5451.269.
    • Lear, C. H., Y. Rosenthal, and N. Slowey ( 2 00 2 ) , B e nt h i c f o r a mi n i f e r a l Mg / C a ‐ paleothermometry: A revised core‐top calibration, Geochim. Cosmochim. Acta, 66, 3375-3387, doi:10.1016/S0016-7037(02)00941-9.
    • Lear, C. H., Y. Rosenthal, H. K. Coxall, and P. A. Wilson (2004), Late Eocene to early Miocene ice sheet dynamics and the global c a r b o n c y c l e , P a l e o c e a n o g r a p h y , 1 9 , PA4015, doi:10.1029/2004PA001039.
    • Lear, C. H., T. R. Bailey, P. N. Pearson, H. K. Coxall, and Y. Rosenthal (2008), Cooling and ice growth across the Eocene‐Oligocene transition, Geology, 36, 251-254, doi:10.1130/ G24584A.1.
    • Marchitto, T. M., S. P. Bryan, W. B. Curry, and D. C. McCorkle (2007), Mg/Ca temperature calibration for the benthic foraminifer Cibicidoides pachyderma, Paleoceanography, 22, PA1203, doi:10.1029/2006PA001287.
    • Marriott, C. S., G. M. Henderson, R. Crompton, M. Staubwasser, and S. Shaw (2004), Effect of mineralogy, salinity, and temperature on Li/Ca and Li isotope composition of calcium carbonate, Chem. Geol., 212, 5-15, doi:10.1016/j. chemgeo.2004.08.002.
    • Martin, P. A., D. W. Lea, Y. Rosenthal, N. J. Shackleton, M. Sarnthein, and T. Papenfuss (2002), Quaternary deep sea temperature histories derived from benthic foraminiferal Mg/Ca, Earth Planet. Sci. Lett., 198, 193-209, doi:10.1016/S0012-821X(02)00472-7.
    • Mawbey, E. M., C. H. Lear, and H. K. Coxall (2009), Trace metal proxy records across the Eocene/Oligocene boundary from ODP Leg 199, abstract presented at First Antarctic Climate Evolution Meeting, Minist. de Cienc. e Innovación, Gob. de España, Granada, Spain.
    • Merico, A., T. Tyrrell, and P. A. Wilson (2008), Eocene/Oligocene ocean de‐acidification linked to Antarctic glaciation by sea‐level fall, N a t u r e , 4 5 2 , 9 7 9 - 9 8 2 , d o i : 1 0 . 1 0 3 8 / nature06853.
    • Miller, K. G., R. G. Fairbanks, and G. S. Mountain (1987), Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion, Paleoceanography, 2, 1-19, doi:10.1029/ PA002i001p00001.
    • Miller, K. G., M. A. Kominz, J. V. Browning, J. D. Wright, G. S. Mountain, M. E. Katz, P. J. Sugarman, B. S. Cramer, N. Christie‐Blick, and S. F. Pekar (2005), The Phanerozoic record of global sea‐level change, Science, 310, 1293-1298, doi:10.1126/science.1116412.
    • Müller, R. D., M. Sdolias, C. Gaina, B. Steinberger, and C. Heine (2008), Long‐term sea‐level fluctuations driven by ocean basin dynamics, Science, 319, 1357-1362, doi:10.1126/ science.1151540.
    • Pagani, M., M. A. Arthur, and K. H. Freeman (1999), Miocene evolution of atmospheric carbon dioxide, Paleoceanography, 14, 273-292, doi:10.1029/1999PA900006.
    • Pagani, M., K. Caldeira, R. Berner, and D. J. Beerling (2009), The role of terrestrial plants in limiting atmospheric CO2 decline over the past 24 million years, Nature, 460, 85-88, doi:10.1038/nature08133.
    • Pearson, P. N., and M. R. Palmer (2000), Atmospheric carbon dioxide concentrations over the past 60 million years, Nature, 406, 695-699, doi:10.1038/35021000.
    • Pearson, P. N., G. L. Foster, and B. S. Wade (2009), Atmospheric carbon dioxide through the Eocene‐Oligocene climate transition, Nature, 461, 1110-1113, doi:10.1038/ nature08447.
    • Pekar, S. F., N. Christie‐Blick, M. A. Kominz, and K. G. Miller (2002), Calibration between eustatic estimates from backstripping and oxygen isotopic records for the Oligocene, Geology, 30, 903-906, doi:10.1130/0091-7613 (2002)030<0903:CBEEFB>2.0.CO;2.
    • Petit, J. R., et al. (1999), Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429-436, doi:10.1038/20859.
    • Pollard, D., and R. M. DeConto (2005), Hysteresis in Cenozoic Antarctic ice‐sheet variations, Global Planet. Change, 45, 9-21, doi:10.1016/j.gloplacha.2004.09.011.
    • Rea, D. K., and M. W. Lyle (2005), Paleogene calcite compensation depth in the eastern subtropical Pacific: Answers and questions, Paleoceanography, 20, PA1012, doi:10.1029/ 2004PA001064.
    • Rosenthal, Y., C. H. Lear, D. W. Oppo, and B. K. Linsley (2006), Temperature and carbonate ion effects on Mg/Ca and Sr/Ca ratios in benthic foraminifera: Aragonitic species Hoeglundina elegans, Paleoceanography, 21, PA1007, doi:10.1029/2005PA001158.
    • Sabine, C., R. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. R. Wallace, and B. Tilbrook (2004), The oceanic sink for anthropogenic CO2, Science, 305, 367-371, doi:10.1126/science.1097403.
    • Shackleton, N. J. (1974), Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: Isotopic changes in the ocean during the last glacial, Colloq. Int. CNRS, 219, 203-209.
    • Shackleton, N. J., and J. P. Kennett (1975), Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: Oxygen and carbon isotope analyses in DSDP Sites 277, 279, and 281, Initial Rep. Deep Sea Drill. Proj., 29, 743-755.
    • Shevenell, A. E., J. P. Kennett, and D. W. Lea (2008), Middle Miocene ice sheet dynamics, deep‐sea temperatures, and carbon cycling: A Southern Ocean perspective, Geochem. Geophys. Geosyst., 9, Q02006, doi:10.1029/ 2007GC001736.
    • Sosdian, S., and Y. Rosenthal (2009), Deep‐sea temperature and ice volume changes across the Pliocene‐Pleistocene climate transitions, Science, 325, 306-310, doi:10.1126/science.1169938.
    • Stoffynegli, P., and F. T. MacKenzie (1984), Mass balance of dissolved lithium in the oceans, Geochim. Cosmochim. Acta, 48, 859-872, doi:10.1016/0016-7037(84)90107-8.
    • Vincent, E., and W. H. Berger (1985), Carbon dioxide and polar cooling in the Miocene: The Monterey hypothesis, in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Monogr. Ser., vol. 32, edited by E. T. Sundquist and W. S. Broecker, pp. 455-468, AGU, Washington, D. C.
    • Yu, J., and H. Elderfield (2008), Mg/Ca in the benthic foraminifera Cibicidoides wuellerstorfi and Cibicidoides mundulus: Temperature versus carbonate ion saturation, Earth Planet. Sci. Lett., 276, 129-139, doi:10.1016/j. epsl.2008.09.015.
    • Zachos, J., M. Pagani, L. Sloan, E. Thomas, and K. Billups (2001), Trends, rhythms, and Aberrations in global climate 65 Ma to Present, Science, 292, 686-693, doi:10.1126/science.1059412. C. H. Lear and E. M. Mawbey, School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3YE, UK. (; ) Y. Rosenthal, Institute of Marine and Coastal S c i en c e s a n d De p a rt m e nt o f Ge o l o g i c a l Sciences, Rutgers, State University of New Jersey, 71 Dudley Rd., New Brunswick, NJ 08901, USA.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Funded by projects

  • NSF | Assessing the effects of ca...

Cite this article