Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Uthas, Helena; Knigge, Christian; Steeghs, D. (2010)
Publisher: Wiley
Languages: English
Types: Article
Subjects: QB
T Pyx is a luminous recurrent nova that accretes at a much higher rate than is expected for its photometrically determined orbital period of about 1.8 h. We here provide the first spectroscopic confirmation of the orbital period, P = 1.8295 h (f = 13.118368 +/- 1.1 x 10(-5) c d(-1)), based on time-resolved optical spectroscopy obtained at the Very Large Telescope and the Magellan telescope. We also derive an upper limit of the velocity semi-amplitude of the white dwarf, K 1 = 17.9 +/- 1.6 kms(-1), and estimate amass ratio of q = 0.20 +/- 0.03. If the mass of the donor star is estimated using the period-density relation and theoretical main-sequence mass-radius relation for a slightly inflated donor star, we find M-2 = 0.14 +/- 0.03 M-circle dot. This implies a mass of the primary white dwarf of M-1 = 0.7 +/- 0.2 M-circle dot. If the white-dwarf mass is > 1 M-circle dot, as classical nova models imply, the donor mass must be even higher. We therefore rule out the possibility that T Pyx has evolved beyond the period minimum for cataclysmic variables. We find that the system inclination is constrained to be i approximate to 10 degrees, confirming the expectation that T Pyx is a low-inclination system. We also discuss some of the evolutionary implications of the emerging physical picture of T Pyx. In particular, we show that epochs of enhanced mass transfer (like the present) may accelerate or even dominate the overall evolution of the system, even if they are relatively short-lived. We also point out that such phases may be relevant to the evolution of cataclysmic variables more generally.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Baraffe, I., Chabrier, G., Allard, F., et al. 1998, A&A, 337, 403
    • Eggleton, P. P. 1983, ASSL, 101, 39 Greiner, J., Orio, M. & Schartel, N. 2003, A&A, 405, 703 Gänsicke, B. T., Dillon, M., Southworth, J., et al. 2009, MNRAS, 397, 2170
    • Hamuy, M., Walker, A.R., Suntzeff, N.B., et al. 1992, PASP, 104, 533
    • Horne, K., Wade, R. A., & Szkody, P. 1986, MNRAS, 219, 791
    • Knigge, C., King, A.R., & Patterson, J. 2000, A&A, 364, 75
    • Knigge, C. 2006, MNRAS, 373, 484 Kolb, U. 1993, A&A, 271, 149
    • Margon, B., & Deutsch, E.W. 1998, ApJ, 498, 61 Marsh, T. R., & Horne, K. 1988, MNRAS, 235, 269 Mennickent, R. E. 1999, A&A, 348, 364 Oegelman, H., Orio, M., Krautter, J., et al. 1993, Natur, 361, 331
    • Patterson, J., Kemp, J., Shambrook, A., et al. 1998, PASP, 110, 380
    • Patterson, J., Vanmunster, T., Skillman, David R., et al. 2000, PASP, 112, 1584
    • Patterson, J, Thorstensen, J R. & Kemp, J. 2005, PASP, 117, 427
    • Patterson, J., Thorstensen, J. R., Knigge, C. 2008, PASP, 120, 510
    • Pretorius, M. L., Knigge, C. & Kolb, U. 2007, MNRAS, 374, 1495
    • Pretorius, M. L., Knigge, C., O'Donoghue, D., et al. 2007, MNRAS, 382, 1279
    • Pretorius, M. L., Knigge, C. 2008a, MNRAS, 385, 1471 Pretorius, M. L., Knigge, C. 2008b, MNRAS, 385, 1485 Scargle, J. D. 1982, ApJ, 263, 835 Schaefer, B.E., Pagnotta, A., & Shara, M. 2009, arxiv.org, 0906.0933
    • Schneider, D.P. & Young, P. 1980, ApJ, 240, 871 Selvelli, P., Cassatella, A., Gilmozzi, R., et al. 2008, A&A, 492, 787
    • Shafter, A. W. 1983, ApJ, 267, 222 Shahbaz, T., Livio, M., Southwell, K. A., et al. 1997, ApJ, 484, 59
    • Smak, J. 1981, AcA, 31, 395
    • Steeghs, D., & Casares, J. 2002, ApJ, 568, 273 Thorstensen, J. R. 1986, AJ, 91, 940 Vogt, N., Barrera, L.H., Barwig,H., et al. 1990, Proc. of the 11th American Workshop on CV's and LMXRB's, Santa Fe, USA, Oct. 1989, etd. C.Mauche, Cambridge University Press, 391
    • Warner, B. 1973, MNRAS, 162, 189 Warner, B. 1995, Cataclysmic Variable Stars. Cambridge Univ. Press, Cambridge
    • Williams, R. E. 1982, ApJ, 261, 170 Yaron, R., Radebaugh, R., & Elias, E. 2000, ASAJ, 107, 2795
    • Yaron, O., Prialnik, D., Shara, M.M., et al. 2005, ApJ, 623, 398
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article