Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Berry, A. J.; Walker, A. M.; Hermann, J.; O'Neill, H. S.; Foran, G. J.; Gale, J. D.
Languages: English
Types: Article
Subjects: sub-03
Ti K-edge X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra, together with atomic scale calculations, indicate that Ti occupies the Si site in anhydrous forsterite. The energy and intensity of the 1s → 3d transition in the XANES spectrum is diagnostic of Ti on a four-coordinate site. The EXAFS spectra determine a Ti–O bond length of 1.81 ± 0.01 Å. This value is in excellent agreement with that of 1.8 Å determined computationally by periodic density functional theory and an embedded cluster approach for Ti on the Si site; the calculated bond length for Ti on a Mg site is 2.0 Å. Both computational methods further find that the direct substitution of Ti for Si is energetically favoured relative to substitution of Ti for Mg, charge balanced by either a Mg vacancy or Mg on a Si site. Together the results provide unambiguous evidence for Ti occupying the Si site in anhydrous forsterite. Ti-bearing olivine synthesised at upper mantle conditions in the presence of water, however, exhibits a pre-edge feature corresponding to six-fold coordination. This is consistent with the identification of a Ti-clinohumite-like point defect in samples of olivine from upper-mantle spinel peridotite. The change in Ti site thus provides a mechanism for the incorporation of water in olivine. The total Ti content of olivine will comprise varying contributions from Mg2[4]TiO4 and Ti-clinohumite-like Mg[6]TiO2(OH)2 substitutions.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Berry, A.J., Hermann, J., O'Neill, H.St.C., Foran, G.J., 2005. Fingerprinting the water site in mantle olivine. Geology 33, 869-872.
    • Braithwaite, J.S., Sushko, P.V., Wright, K., Catlow, C.R.A., 2002. Hydrogen defects in Forsterite: a test case for the embedded cluster method. Journal of Chemical Physics 116, 2628-2635.
    • Braithwaite, J.S., Wright, K., Catlow, C.R.A., 2003. A theoretical study of the energetics and IR frequencies of hydroxyl defects in forsterite. Journal of Geophysical Research Solid Earth 108. doi:10.1029/2002JB002126 (art. num. 2284).
    • de Leon, J.M., Rehr, J.J., Zabinsky, S.I., Albers, R.C., 1991. Ab initio curved-wave X-ray absorption fine structure. Physical Review B 44, 4146-4156.
    • Dingwell, D.B., Paris, E., Seifert, F., Mottana, A., Romano, C., 1994. X-ray absorption study of Ti-bearing silicate glasses. Physics and Chemistry of Minerals 21, 501-509.
    • Dobrzhinetskaya, L., Green, H.W., Wang, S., 1996. Alpe Arami: a peridotite massif from depths of more than 300 km. Science 271, 1841-1845.
    • Ellis, P.J., Freeman, H.C., 1995. XFIT - an interactive EXAFS analysis program. Journal of Synchrotron Radiation 2, 190-195.
    • Farges, F., Brown Jr., G.E., 1997. Coordination chemistry of titanium(IV) in silicate glasses and melts: IV. XANES studies of synthetic and natural volcanic glasses and tektites at ambient temperature and pressure. Geochimica et Cosmochimica Acta 61, 1863-1870.
    • Farges, F., Brown Jr., G.E., Rehr, J.J., 1996. Coordination chemistry of Ti (IV) in silicate glasses and melts: I. XAFS study of titanium coordination in oxide model compounds. Geochimica et Cosmochimica Acta 60, 3023-3038.
    • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Baboul, A.G., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P.M.W., Johnson, B.G., Chen, W., Wong, M.W., Andres, J.L., HeadGordon, M., Replogle, E.S., Pople, J.A., 1998. Gaussian 98 (Revision A.7). Gaussian Inc., Pittsburg.
    • Green, H.W., Dobrzhinetskaya, L., Riggs, E.M., Zhen-Ming, J., 1997. Alpe Arami: a peridotite massif from the mantle transition zone. Tectonphysics 279, 1-21.
    • Hartman, P., 1969. Can Ti4+ replace Si4+ in silicates? Mineralogical Magazine 37, 366-369.
    • Hermann, J., O'Neill, H.St.C., Berry, A.J., 2005. Titanium solubility in olivine in the system TiO2-MgO-SiO2: no evidence for an ultradeep origin of Ti-bearing olivines. Contributions to Mineralogy and Petrology 148, 746-760.
    • Hermann, J., Fitz Gerald, J., Malaspina, N., Berry, A.J., Scambelluri, M., 2007. OH-bearing planar defects in olivine produced by the breakdown of Ti-rich humite minerals from Dabie Shan (China). Contributions to Mineralogy and Petrology 153, 417-428.
    • Hohenberg, P., Kohn, W., 1964. Inhomogeneous electron gas. Physical Review 136, 864-871.
    • Junquera, J., Paz, O., Sánchez-Portal, D., Artacho, E., 2001. Numerical atomic orbitals for linear-scaling calculations. Physical Review B 64 (art. num. 235111).
    • Kitamura, M., Kondoh, S., Morimoto, N., Miller, G.H., Rossman, G.R., Putnis, A., 1987. Planar OH-bearing defects in mantle olivine. Nature 328, 143-145.
    • Kohlstedt, D.L., Keppler, H., Rubie, D.C., 1996. Solubility of water in the α, β and γ phases of (Mg, Fe)2SiO4. Contributions to Mineralogy and Petrology 123, 345-357.
    • Kohn, W., Sham, L.J., 1965. Self-consistent equations including exchange and correlation effects. Physical Review 140, 1133-1138.
    • Krause, M.O., Oliver, J.H., 1979. Natural widths of atomic K and L levels, Kα X-ray lines and several KLL Auger lines. Journal of Physical and Chemical Reference Data 8, 329-338.
    • Lager, G.A., Armbruster, T., Ross, F.K., Rotella, F.J., Jorgensen, J.D., 1981. Neutron powder diffraction study of defect spinel structures: tetrahedrally coordinated Ti4+ in Ni2.62Ti0.69O4 and Ni2.42Ti0.74- Si0.05O4. Journal of Applied Crystallography 14, 261-264.
    • Lemaire, C., Kohn, S.C., Brooker, R.A., 2004. The effect of silica activity on the incorporation mechanism of water in synthetic forsterite: a polarised infrared spectroscopic study. Contributions to Mineralogy and Petrology 147, 48-57.
    • Matveev, S., O'Neill, H.S.C., Ballhaus, C., Taylor, W.R., Green, D.H., 2001. Effect of silica activity on OH-IR spectra of olivine: implications for low-aSiO2 mantle metasomatism. Journal of Petrology 42, 721-729.
    • Mosenfelder, J.L., Sharp, T.G., Asimow, P.D., Rossman, G.R., 2006. Hydrogen incorporation in natural mantle olivines. In: Jacobsen, S.D., van der Lee, S. (Eds.), Earth's Deep Water Cycle. Geophysical Monograph Series, vol. 168. AGU Geophysical Monograph, pp. 45-56.
    • O'Neill, H.St.C., Navrotsky, A., 1983. Simple spinels - crystallographic parameters, cation radii, lattice energies, and cation distribution. American Mineralogist 68, 181-194.
    • Paris, E., Dingwell, D.B., Seifert, F.A., Mottana, A., Romano, C., 1994. Pressure-induced coordination change of Ti in silicate glass: a XANES study. Physics and Chemistry of Minerals 21, 510-515.
    • Perdew, J.P., 1991. In: Zesche, P., Eschrig, H. (Eds.), Electronic Structure of Solids'91. Akaemie Verlag, Berlin, p. 11.
    • Perdew, J.P., Wang, Y., 1992. Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B 45, 13244-13249.
    • Perdew, J.P., Burke, K., Emzerhof, M., 1996. Generalized gradient approximation made simple. Physical Review Letters 77, 3865-3868.
    • Risold, A.C., Trommsdorff, V., Grobéty, B., 2001. Genesis of ilmenite rods and palisades along humite-type defects in olivine from Alpe Arami. Contributions to Mineralogy and Petrology 140, 619-628.
    • Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., 2002. The SIESTA method for ab initio order-N materials simulation. Journal of Physics. Condensed Matter 14, 2745-2776.
    • Sushko, P.V., Shluger, A.L., Baetzold, R.C., Catlow, C.R.A., 2000a. Embedded cluster calculations of metal complex impurity defects: properties of the iron cyanide in NaCl. Journal of Physics. Condensed Matter 12, 8257-8266.
    • Sushko, P.V., Shluger, A.L., Catlow, C.R.A., 2000b. Relative energies of surface and defect states: ab initio calculations for the MgO (001) surface. Surface Science 450, 153-170.
    • Troullier, N., Martins, J.L., 1991. Efficient pseudopotentials for planewave calculations. Physical Review B 43, 1993-2006.
    • Walker, A.M., Hermann, J., Berry, A.J., O'Neill, H.St.C., 2007. Three water sites in upper mantle olivine and the role of titanium in the water weakening mechanism. Journal of Geophysical Research 112. doi:10.1029/2006JB004620.
    • Waychunas, G.A., 1987. Synchrotron radiation XANES spectroscopy of Ti in minerals: effects of Ti bonding distances, Ti valence, and site geometry on absorption edge structure. American Mineralogist 72, 89-101.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article