LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bagchi, Bijan; Fring, Andreas (2009)
Publisher: Elsevier
Languages: English
Types: Article
Subjects: General Relativity and Quantum Cosmology, QC, High Energy Physics - Theory, Quantum Physics
Deformations of the canonical commutation relations lead to non-Hermitian momentum and position operators and therefore almost inevitably to non-Hermitian Hamiltonians. We demonstrate that such type of deformed quantum mechanical systems may be treated in a similar framework as quasi/pseudo and/or PT-symmetric systems, which have recently attracted much attention. For a newly proposed deformation of exponential type we compute the minimal uncertainty and minimal length, which are essential in almost all approaches to quantum gravity.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] X. Calmet, M. Graesser, and S. D. H. Hsu, Phys. Rev. Lett. 93, 211101 (2004).
    • [2] D. Gross and P. Mende, Nucl. Phys. B303, 407 (1988); D. Amati, M. Ciafaloni, and G. Veneziano, Phys. Lett. B216, 41 (1989).
    • [3] C. Rovelli, Living Rev. Rel 11, 5 (2008).
    • [4] A. Kempf, G. Mangano, and R. B. Mann, Phys. Rev. D52, 1108 (1995).
    • [5] G. Brodimas, A. Jannussis, and R. Mignani, J. Phys. A25, L329 (1992).
    • [6] J. Schwenk and J. Wess, Phys. Lett. B291, 273 (1992).
    • [7] L. C. Biedenham, J. Phys. A22, L873 (1989); A. J. Macfarlane, J. Phys. A22, 4581 (1989); C.-P. Su and H.-C. Fu, J. Phys. A22, L983 (1989).
    • [8] C. Quesne and V. M. Tkachuk, SIGMA 3, 016 (2007).
    • [9] S. Hossenfelder, Class. Quant. Grav. 23, 1815 (2006).
    • [10] C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 2 where we used DP˜E˜ρρ−1 = hpi. Since τ is positive the 5243 (1998).
    • [11] C. M. Bender, Rept. Prog. Phys. 70, 947 (2007).
    • [12] O. Bendix, R. Fleischmann, T. Kottos, and B. Shapiro, Phys. Rev. Lett. 103, 030402 (2009).
    • [13] J. Dieudonn´e, Proc. of the Int. Symp. on Linear Spaces, Pergamon, Oxford, 115 (1961); F. G. Scholtz, H. B. Geyer, and F. Hahne, Ann. Phys. 213, 74 (1992).
    • [14] M. Froissart, Il Nuovo Cimento 14, 197 (1959); E. C. G. Sudarshan, Phys. Rev. 123, 2183 (1961); A. Mostafazadeh, J. Math. Phys. 43, 2814 (2002).
    • [15] C. M. Bender, D. Brody, and H. F. Jones, Phys. Rev. Lett. 89, 270401 (2002); Phys. Rev. D70, 025001 (2004); E. Wigner, J. Math. Phys. 1, 409 (1960).
    • [16] M. S. Swanson, J. Math. Phys. 45, 585 (2004).
    • [17] H. F. Jones and J. Mateo, Phys. Rev. D73, 085002 (2006).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article