LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Sheil, Conor J.; Bahrami, Mehdi; Goncharov, Alexander V. (2014)
Publisher: Optical Society of America
Languages: English
Types: Article
Subjects: Vision and Visual Optics, physics, biological

Classified by OpenAIRE into

arxiv: Physics::Optics
We present an analytical method to describe the accommodative changes in the human crystalline lens. The method is based on the geometry-invariant lens model, in which the gradient-index (GRIN) iso-indicial contours are coupled to the external shape. This feature ensures that any given number of iso-indicial contours does not change with accommodation, which preserves the optical integrity of the GRIN structure. The coupling also enables us to define the GRIN structure if the radii and asphericities of the external lens surfaces are known. As an example, the accommodative changes in lenticular radii and central thickness were taken from the literature, while the asphericities of the external surfaces were derived analytically by adhering to the basic physical conditions of constant lens volume and its axial position. The resulting changes in lens geometry are consistent with experimental data, and the optical properties are in line with expected values for optical power and spherical aberration. The aim of the paper is to provide an anatomically and optically accurate lens model that is valid for 3 mm pupils and can be used as a new tool for better understanding of accommodation.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 6. A. Gullstrand, Appendix IV of Treatise on Physiological Optics, vol. 1 (Dover Phoenix Editions, 2005).
    • 7. Y. Le Grand and S. G. El Hage, Physiological Optics (Springer-Verlag, 1980).
    • 8. J. W. Blaker, “Toward an adaptive model of the human eye,” Journal of the Optical Society of America 70, 220-223 (1980).
    • 9. R. Navarro, J. Santamar´ıa, and J. Besco´s, “Accommodation-dependent model of the human eye with aspherics,” Journal of the Optical Society of America A 2, 1273-1280 (1985).
    • 10. G. Smith, P. Bedggood, R. Ashman, M. Daaboul, and A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optometry & Vision Science 85, 330-340 (2008).
    • 11. H.-L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” Journal of the Optical Society of America A 14, 1684-1695 (1997).
    • 12. G. Smith, D. A. Atchison, and B. K. Pierscionek, “Modeling the power of the aging human eye,” Journal of the Optical Society of America A 9, 2111-2117 (1992).
    • 13. M. Bahrami and A. V. Goncharov, “Geometry-invariant gradient refractive index lens: analytical ray tracing,” Journal of Biomedical Optics 17, 055001-1 - 055001-9 (2012).
    • 14. A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” Journal of the Optical Society of America A 24, 2157-2174 (2007).
    • 15. R. Navarro, F. Palos, and L. Gonza´lez, “Adaptive model of the gradient index of the human lens. i. formulation and model of aging ex vivo lenses,” Journal of the Optical Society of America A 24, 2175-2185 (2007).
    • 16. G. Smith, “The optical properties of the crystalline lens and their significance.” Clinical & Experimental Optometry 86, 3-18 (2003).
    • 17. C. Jones, D. Atchison, R. Meder, and J. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Research 45, 2352-2366 (2005).
    • 18. E. A. Hermans, P. J. W. Pouwels, M. Dubbelman, J. P. A. Kuijer, R. G. L. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: An MRI and scheimpflug study,” Investigative Ophthalmology & Visual Science 50, 281-289 (2009).
    • 19. C. E. Jones, D. A. Atchison, and J. M. Pope, “Changes in lens dimensions and refractive index with age and accommodation,” Optometry & Vision Science 84, 990-995 (2007).
    • 20. R. Gerometta, A. C. Zamudio, D. P. Escobar, and O. A. Candia, “Volume change of the ocular lens during accommodation,” American Journal of Physiology - Cell Physiology 293, C797-C804 (2007).
    • 21. S. A. Strenk, L. M. Strenk, J. L. Semmlow, and J. K. DeMarco, “Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area,” Investigative Ophthalmology & Visual Science 45, 539-545 (2004).
    • 22. S. J. Judge and H. J. Burd, “The MRI data of strenk et al. do not suggest lens compression in the unaccommodated state (e-letter),” Investigative Ophthalmology & Visual Science 45, 539 (2004).
    • 23. R. A. Schachar, “The change in intralenticular pressure during human accommodation (e-letter),” Investigative Ophthalmology & Visual Science 45, 539 (2004).
    • 24. M. Dubbelman, G. V. der Heijde, and H. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Research 45, 117-132 (2005).
    • 25. S. Ortiz, P. Pe´rez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomedical Optics Express 3, 2471-2488 (2012).
    • 26. R. Navarro, F. Palos, and L. M. Gonza´lez, “Adaptive model of the gradient index of the human lens. ii. optics of the accommodating aging lens,” Journal of the Optical Society of America A 24, 2911-2920 (2007).
    • 27. C. E. Campbell, “Nested shell optical model of the lens of the human eye,” Journal of the Optical Society of America A 27, 2432-2441 (2010).
    • 28. E. Lanchares, R. Navarro, and B. Calvo, “Hyperelastic modelling of the crystalline lens: Accommodation and presbyopia,” Journal of Optometry 5, 110-120 (2012).
    • 29. M. Dubbelman and G. van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Research 41, 1867-1877 (2001).
    • 30. M. J. Howcroft and J. A. Parker, “Aspheric curvatures for the human lens,” Vision Research 17, 1217-1213 (1977).
    • 31. D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J.-M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomedical Optics Express 1, 1331-1340 (2010).
    • 32. F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J.-M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Experimental Eye Research 78, 39-51 (2004).
    • 33. E. Hermans, M. Dubbelman, G. van der Heijde, and R. Heethaar, “Estimating the external force acting on the human eye lens during accommodation by finite element modelling,” Vision Research 46, 3642-3650 (2006).
    • 34. R. Urs, F. Manns, A. Ho, D. Borja, A. Amelinckx, J. Smith, R. Jain, R. Augusteyn, and J.-M. Parel, “Shape of the isolated ex-vivo human crystalline lens,” Vision Research 49, 74-83 (2009).
    • 35. J. F. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” Journal of the Optical Society of America A 21, 346-354 (2004).
    • 36. R. Urs, A. Ho, F. Manns, and J.-M. Parel, “Age-dependent fourier model of the shape of the isolated ex vivo human crystalline lens,” Vision Research 50, 1041-1047 (2010).
    • 37. A. Ivanoff, “On the influence of accommodation on spherical aberration in the human eye, an attempt to interpret night myopia,” Journal of the Optical Society of America 37, 730-731 (1947).
    • 38. M. Koomen, R. Tousey, and R. Scolnik, “The spherical aberration of the eye,” Journal of the Optical Society of America 39, 370-372 (1949).
    • 39. T. Jenkins, “Aberrations of the eye and their effects on vision: 1. spherical aberration,” The British journal of physiological optics 20, 59 (1963).
    • 40. D. A. Atchison, M. J. Collins, C. F. Wildsoet, J. Christensen, and M. D. Waterworth, “Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the howland aberroscope technique,” Vision Research 35, 313-323 (1995).
    • 41. M. J. Collins, C. F. Wildsoet, and D. A. Atchison, “Monochromatic aberrations and myopia,” Vision Research 35, 1157-1163 (1995).
    • 42. J. He, S. Burns, and S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Research 40, 41-48 (2000).
    • 43. S. Ninomiya, T. Fujikado, T. Kuroda, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, “Changes of ocular aberration with accommodation,” American Journal of Ophthalmology 134, 924-926 (2002).
    • 44. C. Hazel, M. Cox, and N. Strang, “Wavefront aberration and its relationship to the accommodative stimulusresponse function in myopic subjects,” Optometry & Vision Science 80, 151-158 (2003).
    • 45. H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accomodation,” Journal of Vision 4, 272-280 (2004).
    • 46. S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” Journal of Vision 5, 466-477 (2005).
    • 47. Y. Wang, Z.-Q. Wang, H.-Q. Guo, Y. Wang, and T. Zuo, “Wavefront aberrations in the accommodated human eye based on individual eye model,” Optik - International Journal for Light and Electron Optics 118, 271-277 (2007).
    • 48. E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” Journal of Vision 9, 1-15 (2009).
    • 49. Y.-J. Li, J. A. Choi, H. Kim, S.-Y. Yu, and C.-K. Joo, “Changes in ocular wavefront aberrations and retinal image quality with objective accommodation,” Journal of Cataract & Refractive Surgery 37, 835-841 (2011).
    • 50. T. Young, “On the mechanism of the eye,” Philosophical Transactions of the Royal Society of London 91, 23-88 (1801).
    • 51. N. Lo´pez-Gil, V. Ferna´ndez-Sa´nchez, R. Legras, R. Monte´s-Mico´, F. Lara, and J. L. Nguyen-Khoa, “Accommodation-related changes in monochromatic aberrations of the human eye as a function of age,” Investigative Ophthalmology & Visual Science 49, 1736-1743 (2008).
    • 52. S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Investigative Ophthalmology & Visual Science 49, 2531-2540 (2008).
    • 53. G. Smith, D. A. Atchison, D. R. Iskander, C. E. Jones, and J. M. Pope, “Mathematical models for describing the shape of the in vitro unstretched human crystalline lens,” Vision Research 49, 2442-2452 (2009).
    • 54. H. T. Kasprzak, “New approximation for the whole profile of the human crystalline lens,” Ophthalmic & Physiological Optics 20, 31-43 (2000).
    • 55. S. Giovanzana, R. A. Schachar, S. Talu, R. D. Kirby, E. Yan, and B. K. Pierscionek, “Evaluation of equations for describing the human crystalline lens,” Journal of Modern Optics 60, 406-413 (2013).
    • 56. S. G. El Hage and F. Berny, “Contribution of the crystalline lens to the spherical aberration of the eye,” Journal of the Optical Society of America 63, 205-211 (1973).
    • 57. J. Sivak and R. Kreuzer, “Spherical aberration of the crystalline lens,” Vision Research 23, 59-70 (1983).
    • 58. A. Tomlinson, R. P. Hemenger, and R. Garriott, “Method for estimating the spheric aberration of the human crystalline lens in vivo.” Investigative Ophthalmology & Visual Science 34, 621-629 (1993).
    • 59. P. Artal and A. Guirao, “Contributions of the cornea and the lens to the aberrations of the human eye,” Optics Letters 23, 1713-1715 (1998).
    • 60. T. Salmon and L. Thibos, “Relative contribution of the cornea and internal optics to the aberrations of the eye,” Optometry & Vision Science 75, 235 (1998).
    • 61. P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” Journal of Vision 1, 1-8 (2001).
    • 62. G. Smith, M. J. Cox, R. Calver, and L. F. Garner, “The spherical aberration of the crystalline lens of the human eye,” Vision Research 41, 235-243 (2001).
    • 63. S. Amano, Y. Amano, S. Yamagami, T. Miyai, K. Miyata, T. Samejima, and T. Oshika, “Age-related changes in corneal and ocular higher-order wavefront aberrations,” American Journal of Ophthalmology 137, 988-992 (2004).
    • 64. J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    60
    60%
    69
    69%
  • No similar publications.

Share - Bookmark

Cite this article