Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Saeed, Soran (2006)
Publisher: University of Greenwich,
Languages: English
Types: Doctoral thesis
Subjects: HA, QA, TS
This thesis investigates the feasibility of establishing a generalised approach for defining similarity metrics between 3D shapes for the casting design problem in Case-Based Reasoning (CBR).\ud \ud This research investigates a new approach for improving the quality of casting design advice achieved from a CBR system using casting design knowledge associated with past cases. The new approach uses enhanced similarity metrics to those used in previous research in this area to achieve improvements in the advice given. The new similarity metrics proposed here are based on the decomposition of casting shape cases into a set of components. The research into metrics defines and uses the Component Type Similarity Metric (CTM) and Maximum Common Subgraph (MCS) metric between graph representations of the case shapes and are focused on the definition of partial similarity between the components of the same type that take into account the geometrical features and proportions of each single shape component. Additionally, the investigation extends the scope of the research to 3D shapes by defining and evaluating a new metric for the overall similarity between 3D shapes. Additionally, this research investigates a methodology for the integration of the CBR cycle and automation of the feature extraction from target and source case shapes.\ud \ud The ShapeCBR system has been developed to demonstrate the feasibility of integrating the CBR approach for retrieving and reusing casting design advice. The ShapeCBR system automates the decomposition process, the classification process and the shape matching process and is used to evaluate the new similarity metrics proposed in this research and the extension of the approach to 3D shapes.\ud \ud Evaluation of the new similarity metrics show that the efficiency of the system is enhanced using the new similarity metrics and that the new approach provides useful casting design information for 3D casting shapes. Additionally, ShapeCBR shows that it is possible to automate the decomposition and classification of components that allow a case shape to be represented in graph form and thus provide the basis for automating the overall CBR cycle.\ud \ud The thesis concludes with new research questions that emerge from this research and an agenda for further work to be pursued in further research in the area.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article