Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Pawson, S.; Kodera, K.; Hamilton, K.; Shepherd, T. G.; Beagley, S. R.; Boville, B. A.; Farrara, J. D.; Fairlie, T. D. A.; Kitoh, A.; Lahoz, W. A.; Langematz, U.; Manzini, E.; Rind, D. H.; Scaife, A. A.; Shibata, K.; Simon, P.; Swinbank, R.; Takacs, L.; Wilson, R. J.; Al-Saadi, J. A.; Amodei, M.; Chiba, M.; Coy, L.; de Grandpré, J.; Eckman, R. S.; Fiorino, M.; Grose, W. L.; Koide, H.; Koshyk, J. N.; Li, D. ... view all 40 authors View less authors (2000)
Publisher: American Meteorological Society
Languages: English
Types: Article
To investigate the effects of the middle atmosphere on climate, the World Climate Research Programme is supporting the project "Stratospheric Processes and their Role in Climate" (SPARC). A central theme of SPARC, to examine model simulations of the coupled troposphere—middle atmosphere system, is being performed through the initiative called GRIPS (GCM—Reality Intercomparison Project for SPARC). In this paper, an overview of the objectives of GRIPS is given. Initial activities include an assessment of the performance of middle atmosphere climate models, and preliminary results from this evaluation are presented here. It is shown that although all 13 models evaluated represent most major features of the mean atmospheric state, there are deficiencies in the magnitude and location of the features, which cannot easily be traced to the formulation (resolution or the parameterizations included) of the models. Most models show a cold bias in all locations, apart from the tropical tropopause region where they can be either too warm or too cold. The strengths and locations of the major jets are often misrepresented in the models. Looking at three—dimensional fields reveals, for some models, more severe deficiencies in the magnitude and positioning of the dominant structures (such as the Aleutian high in the stratosphere), although undersampling might explain some of these differences from observations. All the models have shortcomings in their simulations of the present—day climate, which might limit the accuracy of predictions of the climate response to ozone change and other anomalous forcing.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alexander, M. J., and K. M. Rosenlof, 1996: Nonstationary gravity wave forcing of the stratosphere zonal mean wind. J. Geophys. Res., 101, 23 465-23 474.
    • Arakawa, A., 1966: Computational design for long-term numerical integration of the equations of fluid motion: Twodimensional incompressible flow. J. Comput. Phys., 1, 119-143.
    • Bailey, M. J., A. O'Neill, and V. D. Pope, 1993: Stratosopheric analyses produced by the United Kingdom Meteorological Office. J. Appl. Meteor., 32, 1472-1483.
    • Baldwin, M. P., X. Cheng, and T. J. Dunkerton, 1994: Observed correlations between winter-mean tropospheric and stratospheric circulation anomalies. Geophys. Res. Lett., 21, 1141-1144.
    • Beagley, S. R., J. de Grandpré, J. N. Koshyk, N. A. McFarlane, and T. G. Shepherd, 1997: Radiative-dynamical climatology of the first-generation Canadian middle atmosphere model. Atmos.-Ocean, 35, 293-331.
    • Boer, G., N. MacFarlane, R. Laprise, J. D. Henderson, and J.-P. Blanchet, 1984: The climatology of the Canadian Climate Centre General Circulation Model as obtained from a five-year simulation. Atmos.-Ocean, 22, 430-473.
    • --, and Coauthors, 1992: Some results from an intercomparison of the climates simulated by 14 atmospheric general circulation models. J. Geophys. Res., 97, 12 771-12 786.
    • Bossuet, C., M. Déqué, and D. Cariolle, 1998: Impact of a simple parameterization of convective gravity-wave drag in a stratosphere-troposphere general circulation model and its sensitivity to vertical resolution. Ann. Geophys., 16, 238-249.
    • Bourke, W., 1972: An efficient, one-level primitive equation spectral model. Mon. Wea Rev., 100, 683-689.
    • Boville, B. A., 1991: Sensitivity of simulated climate to model resolution. J. Climate, 4, 469-485.
    • --, 1995: Middle atmospheric version of CCM2 (MACCM2): Annual cycle and interannual variability. J. Geophys. Res., 100, 9017-9039.
    • Cariolle, D., A. Lassere-Bigorry, J.-F. Royer, and J.-F. Geleyn, 1990: A general circulation model simulation of the springtime Antarctic ozone decrease and its impact on mid-latitudes. J Geophys. Res., 95, 1883-1898.
    • Chiba, M., K. Yamazaki, K. Shibata, and Y. Kuroda, 1996: The description of the MRI atmospheric spectral GCM (MRIGSPM) and its mean statistics based on a 10-year integration. Pap. Meteor. Geophys., 47, 1-45.
    • DAO, 1996: Algorithm theoretical basis document version 1.01. Data Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, 276 pp.
    • Déqué, M., C. Dreveton, A. Braun, and D. Cariolle, 1994: The ARPEGE/IFS atmospheric model: A contribution to the French Community climate modelling. Climate Dyn., 10, 249-266.
    • Eckman, R. S., and Coauthors, 1995: Stratospheric trace constituents simulated by a 3D GCM: Comparison with UARS data. J. Geophys. Res., 100, 13 951-13 966.
    • Ellingson, R. G., J. Ellis, and S. Fels, 1991: The intercomparison of radiation codes used in climate models: Longwave results. J Geophys. Res., 96, 8929-8953.
    • Fairlie, T. D. A., J. A. Al-Saadi, W. L. Grose, R. B. Pierce, and R. S. Eckman, 1997: Simulation of inorganic chlorine reservoirs during winter in the low stratosphere using a 3D model of the middle atmosphere with coupled chemistry. Proc. Quad. Ozone Symp., L'Aquila, Italy, International Ozone Commission, 707-710.
    • Fels, S. B., J. D. Mahlman, M. D. Schwarzkopf, and R. W. Sinclair, 1980: Stratospheric sensitivity to perturbations in ozone and carbon dioxide: radiative and dynamical response. J. Atmos. Sci., 37, 2265-2297.
    • Forster, P. M. de F., and K. P. Shine, 1997: Radiative forcing and temperature trends from stratospheric ozone changes. J. Geophys. Res., 102, 10 841-10 855.
    • Gates, W. L., 1992: AMIP: The Atmospheric Model Intercomparison Project. Bull. Amer. Meteor. Soc., 73, 1962-1970.
    • --, and Coauthors, 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP). Bull. Amer. Meteor. Soc., 80, 29-55.
    • Gibson, J. K., P. Kållberg, S. Uppala, A. Hernandez, A. Nomura, and E. Serrano, 1997: ERA description. ECMWF Re-analysis Project Report Series 1, 72 pp.
    • Hamilton, K., R. J. Wilson, J. D. Mahlman, and L. J. Umscheid, 1995: Climatology of the GFDL SKYHI general circulation model. J. Atmos. Sci., 52, 44-66.
    • --, --, and R. S. Hemler, 1999: Middle atmosphere simulated with high vertical and horizontal resolution versions of a GCM:Improvements in the cold pole bias and generation of \a QBO-like oscillation in the Tropics. J Atmos. Sci., 56, 3829- 3846.
    • Haynes, P. H., C. J. Marks, M. E. McIntyre, T. G. Shepherd, and K. P. Shine, 1991: On the “downard control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651-678.
    • Hines, C. O., 1997: Doppler spread parameterization of gravity wave momentum deposition in the middle atmosphere. Part 1: Basic formulation. J. Atmos. Sol.-Terr. Phys., 59, 371-386.
    • Horinouchi, T., and S. Yoden, 1998: Wave-mean flow interaction associated with a QBO-like oscillation in a simplified GCM. J. Atmos. Sci., 55, 502-526.
    • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor Soc., 77, 437-471.
    • Kiehl, J., and B. A. Boville, 1988: The radiative-dynamical response of a stratospheric-tropospheric general circulation model to changes in ozone. J. Atmos Sci., 45, 1798-1817.
    • Kim, Y.-J., J. D. Farrara, and C. R. Mechoso, 1998: Sensitivity of AGCM simulations to modifications in the ozone distribution and refinements in selected physical parameterizations. J. Meteor. Soc. Japan., 76, 695-709.
    • Kitoh, A., Y. Noda, Y. Nikaidou, T. Ose, and T. Tokioka, 1995: AMIP simulations of the MRI GCM. Pap. Meteor. Geophys., 45, 121-148.
    • Kodera, K., 1994: Influence of volcanic eruptions on the troposphere through stratospheric dynamical processes in the Northern Hemisphere winter. J. Geophys. Res., 99, 1273-1282.
    • --, K. Yamazaki, M. Chiba, and K. Shibata, 1990: Downward propagation of upper stratospheric mean zonal wind perturbation to the troposphere. Geophys. Res. Lett., 17, 1263-1266.
    • Langematz, U., and S. Pawson, 1997: The Berlin tropospherestratosphere-mesophere GCM: Climatology and annual cycle. Quart. J. Roy. Meteor. Soc., 123,1075-1096.
    • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86, 9707-9714.
    • Mahlman, J. D., J. P. Pinto, and L. J. Umscheid, 1994: Transport, radiative and dynamical effects of the Antarctic ozone hole: A GFDL “SKYHI” experiment. J. Atmos. Sci., 51, 489- 508.
    • Manzini, E., N. A. McFarlane, and C. McLandress, 1997: Impact of the Doppler-spread parameterization on the simulation of the middle atmosphere circulation using the MA/ECHAM4 general circulation model. J. Geophys. Res., 102, 25 751- 25 762.
    • McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 1775-1800.
    • Mechoso, C. R., M. J. Suarez, K. Yamazaki, J. A. Spahr, and A. Arakawa, 1982: A study of the sensitivity of numerical forecasts to an upper boundary in the lower stratosphere. Mon. Wea. Rev., 110, 1984-1993.
    • Palmer, T. N., G. J. Shutts, and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravitywave drag parameterisation. Quart. J. Roy. Meteor. Soc., 112, 1001-1039.
    • Pawson, S., and M. Fiorino, 1998: A comparison of reanalyses in the tropical stratosphere. Part 1: Thermal structure and the annual cycle. Climate Dyn., 14, 631-644.
    • --, U. Langematz, G. Radek, U. Schlese, and P. Strauch, 1998: The Berlin troposphere-stratosphere-mesosphere GCM: Sensitivity to physical parameterizations. Quart. J. Roy. Meteor. Soc., 124, 1343-1371.
    • Perlwitz, J., and H. Graf, 1995: The statistical connection between the tropospheric and stratospheric circulation of the Northern Hemisphere in winter. J. Climate, 8, 2281-2295.
    • Ramanathan, V., and R. E. Dickinson, 1979: The role of stratospheric ozone in the zonal and seasonal radiative energy balance of the earth-troposphere system. J. Atmos. Sci., 36, 1084- 1104.
    • Ramaswamy, V., M. D. Schwarzkopf, and W. J. Randel, 1996: Fingerprint of ozone depletion in the spatial and temporal pattern of lower-stratospheric cooling. Nature, 382, 616-618.
    • Randel, W. J., 1992: Global atmospheric circulation statistics, 1000-1mb. NCAR Tech. Note, TN-366+STR, 198 pp.
    • --, and Coauthors, 1997: Stratosphere climatology studies for SPARC. Proc. First SPARC General Assembly, Melbourne, Australia, SPARC, WCRP, WMO-TD-No. 814, 75-78.
    • Rind, D., R. Suozzo, N. K. Balachandran, A. Lacis, and G. Russell, 1988a: The GISS global climate-middle atmosphere model. Part 1: Model structure and climatology. J. Atmos. Sci., 45, 329-370.
    • --, --, and --, 1988b: The GISS Global Climate-Middle atmosphere model. Part II: Model variability due to interactions between planetary waves, the mean circulations, and gravity wave drag. J. Atmos. Sci., 45, 371-386.
    • --, J. Lerner, K. Shah and R. Suozzo, 1999: Use of on-line tracers as a diagnostic tool in general circulation model development, part 2: Transport between the troposphere and stratosphere. J. Geophys. Res., 104, 9151-9167.
    • Robock, A., and J.-P. Mao, 1992: Winter warming from large volcanic eruptions. Geophys. Res. Lett., 19, 2405-2408.
    • Santer, B. D., and Coauthors, 1996: A search for human influences on the thermal structure of the atmosphere. Nature, 382, 49-66.
    • Shindell, D. T., D. Rind, and P. Lonergan, 1998: Increased polar stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations. Nature, 392, 589-592.
    • Shine, K. P., and Coauthors, 1995: Radiative forcing due to changes in ozone: a comparison of different codes. Atmospheric Ozone as a Climate Gas, W.-C. Wang and I. S. A. Isaksen, Eds., NATO ASI Series I: Global Environmental Change, Vol. 32, Springer-Verlag, 373-396.
    • Simmons, A. J., and R. Strüfing, 1983: Numerical forecasts of stratospheric warming events using a model with a hybrid vertical coordinate. Quart. J. Roy. Meteor. Soc., 109, 81-111.
    • Swinbank, R., W. A. Lahoz, A. O'Neill, C. S. Douglas, A. Heaps, and D. Podd, 1998: Middle atmosphere variability in the UK Meteorological Office Unified Model. Quart. J. Roy. Meteor. Soc., 124, 1485-1525.
    • Takahashi, M., 1996: Simulation of the stratospheric quasibiennial oscillation using a general circulation model. Geophys. Res. Lett., 23, 661-664.
    • Thompson, D., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297-1300.
    • WCRP, 1993: Stratospheric Processes and Their Role in Climate: Initial review of objectives and scientific issues. WMO/TDNo. 582, WCRP-83, 125 pp.
    • --, 1998: Stratospheric Processes and Their Role in Climate: Implementation plan. WMO/TD-No. 914, WCRP-105, 161 pp.
    • Yulaeva, E., J. R. Holton, and J. M. Wallace, 1994: On the cause of the annual cycle in tropical lower-stratospheric temperatures. J. Atmos. Sci., 51, 169-174.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article