LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Albrecht, Martin; Bard, Gregory; Hart, William B. (2010)
Publisher: Association for Computing Machinery, Inc.
Languages: English
Types: Article
Subjects: QA, QA76
We describe an efficient implementation of a hierarchy of algorithms for multiplication of dense matrices over the field with two elements (F-2). In particular we present our implementation in the M4RI library-of Strassen-Winograd matrix multiplication and the "Method of the Four Russians for Multiplication" (M4RM) and compare it against other available implementations. Good performance is demonstrated on AMD's Opteron processor and particulary good performance on Intel's Core 2 Duo processor. The open-source M4RI library is available as a stand-alone package as well as part of the Sage mathematics system.\ud \ud In machine terms, addition in F2 is logical-XOR, and multiplication is logical-AND, thus a machine word of 64 bits allows one to operate on 64 elements of F2 in parallel: at most one CPU cycle for 64 parallel additions or multiplications. As such, element-wise operations over F2 are relatively cheap. In fact, in this paper, we conclude that the actual bottlenecks are memory reads and writes and issues of data locality. We present our empirical findings in relation to minimizing these and give an analysis thereof.\ud

Share - Bookmark

Cite this article