LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Deena, S.; Hasan, M.; Doulaty, M.; Saz, O.; Hain, T. (2016)
Languages: English
Types: Other
Subjects:
Recurrent neural network language models (RNNLMs) have consistently outperformed n-gram language models when used in automatic speech recognition (ASR). This is because RNNLMs provide robust parameter estimation through the use of a continuous-space representation of words, and can generally model longer context dependencies than n-grams. The adaptation of RNNLMs to new domains remains an active research area and the two main approaches are: feature-based adaptation, where the input to the RNNLM is augmented with auxiliary features; and model-based adaptation, which includes model fine-tuning and introduction of adaptation layer(s) in the network. This paper explores the properties of both types of adaptation on multi-genre broadcast speech recognition. Two hybrid adaptation techniques are proposed, namely the finetuning of feature-based RNNLMs and the use of a feature-based adaptation layer. A method for the semi-supervised adaptation of RNNLMs, using topic model-based genre classification, is also presented and investigated. The gains obtained with RNNLM adaptation on a system trained on 700h. of speech are consistent using both RNNLMs trained on a small (10Mwords) and large set (660M words), with 10% perplexity and 2% word error rate improvements on a 28:3h. test set.

Share - Bookmark

Cite this article