LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Von-Hunerbein, SUM; Cox, TJ; Kendrick, P; Bradley, S
Publisher: EWEA
Languages: English
Types: Unknown
Subjects:
Microphone wind noise can corrupt outdoor measurements and recordings. It is a particular problem for wind turbine measurements because these cannot be carried out when the wind speed is low. Wind shields can be used, but often the sound level from the turbine is low and even the most efficient shields may not provide sufficient attenuation of the microphone wind noise. This study starts by quantifying the effect that microphone wind noise has on the accuracy of two commonly used Amplitude Modulation (AM) metrics. A wind noise simulator and synthesised wind turbine sounds based on real measurements are used. The simulations show that even relatively low wind speeds of 2.5 m/s errors of over 4 dBA can result. Microphone wind noise is intermittent, and consequently one solution is to analyse only uncorrupted parts of the recordings. This paper tests whether a single-ended wind noise detection algorithm can automatically find uncorrupted sections of the recording, and so recover the true AM metrics. Tests showed that doing this can reduce the error to ±2 dBA and ±0.5 dBA for the time and modulation-frequency domain AM metrics respectively. The paper goes on to validate the simulation approach by applying the automatic detection to near field recordings from various adjacent microphones in combination with high quality meteorological mast measurements within 40m of the microphones and wind turbines.

Share - Bookmark

Cite this article