Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Barh, A.; Pal, B. P.; Agrawal, G. P.; Varshney, R. K.; Rahman, B. M. (2016)
Publisher: Institute of Electrical and Electronics Engineers
Languages: English
Types: Article
Subjects: Physics - Optics, TK
Terahertz (THz) frequency range, lying between the optical and microwave frequency ranges covers a significant portion of the electro-magnetic spectrum. Though its initial usage started in the 1960s, active research in the THz field started only in the 1990s by researchers from both optics and microwaves disciplines. The use of optical fibers for THz application has attracted considerable attention in recent years. In this paper, we review the progress and current status of optical fiber-based techniques for THz generation and transmission. The first part of this review focuses on THz sources. After a review on various types of THz sources, we discuss how specialty optical fibers can be used for THz generation. The second part of this review focuses on the guided wave propagation of THz waves for their transmission. After discussing various wave guiding schemes, we consider new fiber designs for THz transmission.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] X. C. Zhang, “Terahertz wave imaging: horizons and hurdles,” Phys. Med. Biol., vol. 47, no. 21, pp. 3667-3677, Oct., 2002.
    • [2] G. P. Gallerano and S. Biedron, “Overview of terahertz radiation sources,” in Proc. FEL Conference, 2004, pp. 216-221.
    • [3] http://en.wikipedia.org/wiki/Terahertz_radiation
    • [4] P. H. Siegel, “THz in space: The golden age,” in IEEE Microwave Symposium Digest (MTT), 2010, pp. 816-819.
    • [5] C. Kulesa, “Terahertz spectroscopy for astronomy: From comets to cosmology,” IEEE Trans. on Terahertz Sc. and Technol., vol. 1, no. 1, pp. 232-240, Sept., 2011.
    • [6] J. E. Beckman and J. E. Harries, “Submillimeter-wave atmospheric and astrophysical spectroscopy,” Appl. Opt., vol. 14, no. 2, pp. 470-485, Feb., 1975.
    • [7] A. E. Salomonovich, “Extra-atmospheric submillimeter astronomy,” Physics-Uspekhi., vol.12, no. 6, pp. 731-742, Jun.,1970.
    • [8] R. A. Lewis, “A review of terahertz sources,” J. Phys. D: Appl. Phys., vol. 47, no. 37, pp. 374001-1-11, Aug., 2014.
    • [9] T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 32, no. 2, pp. 143-171, Jan., 2011.
    • [10] S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics, vol.7, no. 12, pp. 977-981, Oct., 2013.
    • [11] R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: Concepts and perspectives,” IEEE Antennas and Propagation Magazine, vol. 49, no. 6, pp. 24-39, Dec., 2007.
    • [12] H. J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. on Terahertz Sc. and Technol., vol. 1, no. 1, pp. 256-263, Sept., 2011.
    • [13] K. J. Siebert, T. Löffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications,” Phys. Med. Biol., vol. 47, no. 1, pp. 3743-3748, Oct., 2002.
    • [14] A. J. Fitzgerald, E. Berry, R. E. Miles, N. N. Zinovev, M. A. Smith, and J. M. Chamberlain, “Evaluation of image quality in terahertz pulsed imaging using test objects,” Phys. Med. Bio., vol. 47, no. 21, pp. 3865- 3873, Oct., 2002.
    • [15] H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution. Appl. Phys. Lett., vol. 83, no. 15, pp. 3009-3011, Oct., 2003.
    • [16] http://cerncourier.com/cws/article/cern/28777
    • [17] http://www.tydexoptics.com/products/thz_optics/thz_materials/
    • [18] Y. Yang, M. Mandehgar, and D. Grischkowsky, “Understanding THz pulse propagation in the atmosphere,” IEEE Trans. on Terahertz Sc. and Technol., vol. 2, no. 4, pp. 406-415, Jul., 2012.
    • [19] R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, and J. S. Garing, “Optical properties of the atmosphere,” in Handbook of Optics, W. G. Driscoll, ed., McGraw-Hill, 1978, pp. 14-54.
    • [20] M. van Exter, C. Fattinger, and D. Grischkowsky, “Terahertz timedomain spectroscopy of water vapor,” Opt. Lett., vol. 14, no. 20, pp. 1128-1130, Oct., 1989.
    • [21] L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: Signatures and fingerprints,” Nat. Photonics, vol. 2, no. 9, pp. 541-543, Sept., 2008.
    • [22] M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. UhdJepsen, “Collective vibrational modes in biological molecules investigated by terahertz time‐domain spectroscopy,” Biopolymers, vol. 67, no. 4‐5, pp. 310-313, May, 2002.
    • [23] H. H. Mantsch and D. Naumann, “Terahertz spectroscopy: The renaissance of far infrared spectroscopy,” Journal of Molecular Structure, vol. 964, no. 1, pp. 1-4, Feb., 2010.
    • [24] K. Fukunaga, Y. Ogawa, S. I. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electronics Exp., vol. 4, no. 8, pp. 258-263, 2007.
    • [25] M. Kowalski, M. Kastek, M. Piszczek, M. Życzkowski, and M. Szustakowski, “Harmless screening of humans for the detection of concealed objects,” in Safety and Security Engineering VI, WIT press, 2015, pp. 215-223
    • [26] E. Berry, G. C. Walker, A. J. Fitzgerald, N. N. Zinov'ev, M. Chamberlain, S. W. Smye, R. E. Miles, and M. A. Smith, “Do in vivo terahertz imaging systems comply with safety guidelines?,” Journal of Laser Applications, vol. 15, no. 3, pp. 192-198, Jul., 2003.
    • [27] R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biological Phys., vol. 29, no. 2-3, pp. 179-185, Jun., 2003.
    • [28] A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Materials Today, vol. 11. No. 3, pp. 18-26, Mar., 2008.
    • [29] U. Puc, A. Abina, M. Rutar, A. Zidanšek, A. Jeglič, and G. Valušis, “Terahertz spectroscopic identification of explosive and drug simulants concealed by various hiding techniques,” Appl. Opt., vol. 54, no. 14, pp. 4495-4502, May, 2015.
    • [30] J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applicationsexplosives, weapons and drugs,” Semiconductor Sc. and Technol., vol. 20, no. 7, pp. S266-S280, Jul., 2005.
    • [31] http://www.teraview.com/applications/index.html
    • [32] Y. Oyama, L. Zhen, T. Tanabe, and M. Kagaya, “Sub-terahertz imaging of defects in building blocks,” NDT & E International, vol. 42, no. 1, pp. 28-33, Jan., 2009.
    • [33] R. M. Groves, B. Pradarutti, E. Kouloumpi, W. Osten, and G. Notni, “2D and 3D non-destructive evaluation of a wooden panel painting using shearography and terahertz imaging,” NDT & E International, vol. 42, no. 6, pp. 543-549, Sept., 2009.
    • [34] E. Abraham, A. Younus, J. C. Delagnes, and P. Mounaix, “Non-invasive investigation of art paintings by terahertz imaging,” Appl. Phys. A, vol. 100, no. 3, pp. 585-590, Sept., 2010.
    • [35] E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D: Appl. Phys., vol. 39, no. 17, pp. R301-R310, Aug., 2006.
    • [36] K. Humphreys, J. P. Loughran, M. Gradziel, W. Lanigan, T. Ward, J. A. Murphy, and C. O'sullivan, “Medical applications of terahertz imaging: a review of current technology and potential applications in biomedical engineering,” in IEEE Proc.IEMBS'04, 2004, pp. 1302-1305.
    • [37] V. P. Wallace, P. F. Taday, A. J. Fitzgerald, R. M. Woodward, J. Cluff, R. J. Pye, and D. D. Arnone, “Terahertz pulsed imaging and spectroscopy for biomedical and pharmaceutical applications,” Faraday Discussions, vol. 126, pp. 255-263, Oct., 2004.
    • [38] P. H. Siegel, “Terahertz technology in biology and medicine,” in IEEE Microwave Symposium Digest, 2004, pp. 1575-1578.
    • [39] C. M. Armstrong, “The truth about terahertz,” IEEE Spectrum, vol. 49, no. 9, pp. 36-41, Aug., 2012.
    • [40] L. A. Samoska, “An overview of solid-state integrated circuit amplifiers in the submillimeter-wave and THz regime,” IEEE Trans. on Terahertz Sc. and Technol., vol. 1, no. 1, pp. 9-24, Sept., 2011.
    • [41] P. H. Siegel, “Terahertz technology,” IEEE Trans. on Microwave Theory and Techniques, vol. 50, no. 3, pp. 910-928, Mar., 2002.
    • [42] J. Mullins, “Using unusable frequencies [solid-state terahertz laser],” IEEE Spectrum, vol. 39, no. 7, pp. 22-23, Jul., 2002.
    • [43] S. Atakaramians, V. S. Afshar, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Advances in Optics and Photonics, vol. 5, no. 2, pp. 169-215, Jul., 2013.
    • [44] Y. J. Ding, “Progress in terahertz sources based on difference-frequency generation,” JOSA B, vol. 31, no. 11, pp. 2696-2711, Nov., 2014.
    • [45] H. Rubensand and B. W. Snow, “On the refraction of rays of great wavelength in rock salt, sylvine, and fluorite,” Phil. Mag. Series 5, vol. 35, no. 212, pp. 35-45,1893.
    • [46] E. F. Nichols, “A method for energy measurements in the infra-red spectrum and the properties of the ordinary ray in quartz for waves of great wave length,” Phys. Rev. (Series I), vol. 4, no. 4, pp. 297-313, Jan., 1897.
    • [47] R. V. Pound, in Microwave Mixers, L. Ridenour and G. Collins, Eds. New York: McGraw-Hill, 1950.
    • [48] P. L. Richards, “The Josephson junction as a detector of microwave and far infrared radiation,” in Semiconductors and Semimetals, R. K. Willardson and A. C. Beer, Eds. New York: Academic, 1977, vol. 12, pp. 395-439.
    • [49] M. J. Wengler, “Submillimeter-wave detection with superconducting tunnel diodes,” in Proc. IEEE, 1992, pp. 1810-1826.
    • [50] A. Skalare, W. R. McGrath, P. Echternach, H. G. LeDuc, I. Siddiqi, A. Verevkin, and D. E. Prober, “Aluminum hot-electron bolometer mixersat submillimeter wavelengths,” IEEE Trans. Appl. Superconductor, vol. 11, no. 1, pp. 641-644, Mar., 2001.
    • [51] S. Komiyama, O. Astafiev, V. Antonov, H. Hirai, and T. Kutsuwa, “A single-photon detector in the far-infrared range,” Nature, vol. 405, pp. 405-407, Jan., 2000.
    • [52] F. Sizov and A. Rogalski, “THz detectors,” Progress in Quant. Electron, vol. 34, no. 5, pp. 278-347, Sept., 2010.
    • [53] S. Nishizawa, K. Sakai, M. Hangyo, T. Nagashima, M. W. Takeda, K. Tominaga, A. Oka, K. Tanaka, and O. Morikawa, “Terahertz timedomain spectroscopy,” in Terahertz Optoelectronics, K. Sakai, Ed. Springer Berlin Heidelberg, 2005, vol. 97, pp. 203-270.
    • [54] M. Walther, B. M. Fischer, A. Ortner, A. Bitzer, A. Thoman, and H. Helm, “Chemical sensing and imaging with pulsed terahertz radiation,” Analytical and Bioanalytical Chem., vol. 397, no. 3, pp. 1009-1017, Apr., 2010.
    • [55] M. G. Krishna, S. D. Kshirsagar, and S. P. Tewari, “Terahertz Emitters, Detectors and Sensors: Current Status and Future Prospects,” in Photodetectors, S. Gateva, Ed. INTECH Open Access Publisher, 2012, pp. 115-144.
    • [56] R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys., vol. 88, no. 7, pp. 4449-4451, Oct., 2000.
    • [57] S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Letts., vol. 76, no. 15, pp. 1987-1989, Apr., 2000.
    • [58] T. Hidaka, I. Morohashi, K. Komori, H. Nakagawa, and H. Ito, “THz wave hollow waveguide with ferroelectric PVDF polymer as the cladding material,” in IEEE Conference Digest, Lasers and ElectroOptics Europe, 2000, pp. CWF7.
    • [59] B. P. Pal. (Ed.). Fundamentals of fibre optics in telecommunication and sensor systems. Bohem press, 1992, 778 pages.
    • [60] J. M. Dudley and J. R. Taylor. (Eds.). Supercontinuum generation in optical fibers. Cambridge University Press, 2010.
    • [61] W. L. Barnes, S. B. Poole, J. E. Townsend, L. Reekie, D. J. Taylor, and D. N. Payne, “Er 3+-Yb 3+ and Er 3+ doped fiber lasers,” J. Lightwave Technol., vol. 7, no. 10, pp. 1461-1465, Oct., 1989.
    • [62] http://furukawa.co.jp/fiber/index.htm
    • [63] Y. Shibata, K. Ishi, T. Takahashi, T. Kanai, M. Ikezawa, K. Takami, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Observation of coherent transition radiation at millimeter and submillimeter wavelengths,” Phys. Rev. A, vol. 45, no. 12, pp. R8340-R8343, Jun., 1992.
    • [64] L. G. Bonner, “A new type globar support for infrared spectrometry,” Review of Scientific Instruments, vol. 8, no. 7, pp. 264-265, 1937.
    • [65] G. P. Williams, “Filling the THz gap-high power sources and applications,” Rep. Prog. Phys., vol. 69, no. 2, pp. 301-326., Feb., 2006.
    • [66] J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G. S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. on Terahertz Sc. and Technol., vol. 1, no. 1, pp. 54-75, Sept., 2011.
    • [67] F. Wang, D. Cheever, M. Farkhondeh, W. Franklin, E. Ihloff, J. van der Laan, B. McAllister, R. Milner, C. Tschalaer, D. Wang, D. F. Wang, A. Zolfaghari, T. Zwart, G. L. Carr, B. Podobedov, and F. Sannibale, “Coherent THz synchrotron radiation from a storage ring with highfrequency RF system,” Phys. Rev. Letts., vol. 96, no. 6, pp. 064801-1-3, Feb., 2006.
    • [68] G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature, vol. 420, no. 6912, pp. 153-156, Sept., 2002.
    • [69] M. Mukherjee, N. Mazumder, S. K. Roy, and K. Goswami, “GaN IMPATT diode: a photo-sensitive high power terahertz source,” Semiconductor Sc. and Technol., vol. 22, no. 12, pp. 1258-1267, Dec., 2007.
    • [70] W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. S. Shur, “Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors,” Appl. Phys. Letts., vol. 84, no. 13, pp. 2331-2333, Mar., 2004.
    • [71] M. S. Shur and J. Q. Lu, “Terahertz sources and detectors using twodimensional electronic fluid in high electron-mobility transistors,” IEEE Trans. on Microwave Theory and Techniques, vol. 48, no. 4, pp. 750- 756, Apr., 2000.
    • [72] L. Ozyuzer, A. E. Koshelev, C. Kurter, N. Gopalsami, Q. Li, M. Tachiki, K. Kadowaki, T. Yamamoto, H. Minami, H. Yamaguchi, T. Tachiki, K. E. Gray, W.-K. Kwok, and U. Welp, “Emission of coherent THz radiation from superconductors,” Science, vol. 318, no. 5854, pp. 1291- 1293, Nov., 2007.
    • [73] T. Y. Chang, T. J. Bridges, and E. G. Burkhardt, “CW Submillimeter laser action in optically pumped methyl fluoride, methyl alcohol, and vinyl chloride gases,” Appl. Phys. Letts., vol. 17, no. 6, pp. 249-251, Sept., 1970.
    • [74] T. Y. Chang, “Optically pumped submillimeter-wave sources,” IEEE Trans. on Microwave Theory Techniques, vol. 22, pp. 983-988, Dec., 1974.
    • [75] C. Sirtori, S. Barbieri, and R. Colombelli, “Wave engineering with THz quantum cascade lasers,” Nat. Photonics, vol. 7, no. 9, pp. 691-701, Sept., 2013.
    • [76] M. Inguscio, G. Moruzzi, K. M. Evenson, and D. A. Jennings, “A review of frequency measurements of optically pumped lasers from 0.1 to 8 THz,” J. Appl. Phys., vol. 60, no. 12, pp. R161-R192, Dec., 1986.
    • [77] K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics, vol. 2, no. 10, pp. 605-609, Jul., 2008.
    • [78] N. G. Kalugin and Y. V. Rostovtsev, “Efficient generation of short terahertz pulses via stimulated Raman adiabatic passage,” Opt. Lett., vol. 31, no. 7, pp. 969-971, Apr., 2006.
    • [79] X. Xie, J. Dai, and X. C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett., vol. 96, no. 7, pp. 075005-1- 4, Feb., 2006.
    • [80] H. W. Hübers, S. G. Pavlov, and V. N. Shastin, “Terahertz lasers based on germanium and silicon,” Semiconductor Sc. and Technol., vol. 20, no. 7, pp. S211-S221, Jul., 2005.
    • [81] M. A. Odnoblyudov, A. A. Prokofiev, I. N. Yassievich, and K. A. Chao, “Theory of a strained p-Ge resonant-state terahertz laser,” Phys. Rev. B., vol. 70, no. 11, pp. 115209-1-14, Sept., 2004.
    • [82] Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature, vol. 457, no. 7226, pp. 174-178, Jan., 2009.
    • [83] S. A. Lynch, R. Bates, D. J. Paul, D. J. Norris, A. G. Cullis, Z. Ikonic, R. W. Kelsall, P. Harrison, D. D. Arnone, and C. R. Pidgeon, “Intersubband electroluminescence from Si/SiGe cascade emitters at terahertz frequencies,” Appl. Phys. Letts., vol. 81, no. 9, pp. 1543-1545, Aug., 2002.
    • [84] R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature, vol. 417, no. 6885, pp. 156-159, May, 2002.
    • [85] M. Fischer, G. Scalari, K. Celebi, M. Amanti, C. Walther, M. Beck, and J. Faist, “Scattering processes in terahertz InGaAs/InAlAs quantum cascade lasers,” Appl. Phys. Letts., vol. 97, no. 22, pp. 221114-1-3, Dec., 2010.
    • [86] H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao, “Terahertz quantum-cascade lasers based on a three-well active module,” Appl. Phys. Letts., vol. 90, no. 4, pp. 041112-1-3, Jan., 2007.
    • [87] I. Hosako and H. Yasuda, “Terahertz quantum cascade laser based on GaSb/AlGaSb material system,” in Proc. IEEE-ICECom, 2007, pp. 1-3.
    • [88] H. Tanvir, B. M. A. Rahman, and K. T. V. Grattan, “Impact of “Ghost” Mode Interaction in Terahertz Quantum Cascade Lasers,” IEEE Photonics Journal, vol. 3, no. 5, pp. 926-935, Sept., 2011.
    • [89] D. Indjin, Z. Ikonić, V. D. Jovanović, N. Vukmirović, P. Harrison, and R. W. Kelsall, “Relationship between carrier dynamics and temperature in terahertz quantum cascade structures: simulation of GaAs/AlGaAs, SiGe/Si and GaN/AlGaN devices,” Semicond. Sci. Technol., vol. 20, no. 7, pp. S237-S245, Jun., 2005.
    • [90] C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 THz,” Appl. Phys. Letts., vol. 91, no. 13, pp. 131122-1-3, Sept., 2007.
    • [91] S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Exp., vol. 20, no. 4, pp. 3866-3876, Feb., 2012.
    • [92] B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics, vol. 1, no. 9, pp. 517-525, Sept., 2007.
    • [93] M. S. Vitiello, G. Scalari, B. Williams, and P. De Natale, “Quantum cascade lasers: 20 years of challenges,” Opt. Exp., vol. 23, no. 4, pp. 5167-5182, Feb., 2015.
    • [94] J. T. Darrow, X. C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quant. Electron., vol. 28, no. 6, pp. 1607-1616, Jun., 1992.
    • [95] E. Budiarto, J. Margolies, S. Jeong, J. Son, and J. Bokor, “High-intensity terahertz pulses at 1-kHz repetition rate,” IEEE J. Quant. Electro., vol. 32, no. 10, pp.1839-1846, Oct., 1996.
    • [96] S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Letts., vol. 70, no. 5, pp. 559-561, Feb., 1997.
    • [97] J. Zhang, Y. Hong, S. L. Braunstein, and K. A. Shore, "Terahertz pulse generation and detection with LT-GaAs photoconductive antenna,” in Proc. IEEE Optoelectronics, 2004, pp. 98-101.
    • [98] M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Letts., vol. 91, no. 18, pp. 181124-1-3, Nov., 2007.
    • [99] E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low‐temperature‐grown GaAs,” Appl. Phys. Letts., vol. 66, no. 3, pp. 285-287, Jan., 1995.
    • [100] S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Letts., vol. 73, no. 26, pp. 3824-3826, Dec., 1998.
    • [101]M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual-and multiple-mode lasers,” Semiconductor Sc. Technol., vol. 20, no. 7, pp. S151-S163, Jul., 2005.
    • [102]M. Beck, H. Schäfer, G. Klatt, J. Demsar, S. Winnerl, M. Helm, and T. Dekorsy, “Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna,” Opt. Exp., vol. 18, no. 9, pp. 9251-9257, Apr., 2010.
    • [103]G. D. Boyd, T. J. Bridges, C. K. N. Patel, E. Buehler, “Phase‐matched submillimeter wave generation by difference‐frequency mixing in ZnGeP2,” Appl. Phys. Letts., vol. 21, no. 11, pp. 553-555, Dec., 1972.
    • [104]Y. Sasaki, A. Yuri, K. Kawase, H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Letts., vol. 81, no. 18, pp. 3323-3325, Oct., 2002.
    • [105]W. Shi and Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Letts., vol. 83, no. 5, pp. 848- 850, Jul., 2003.
    • [106]A. Rahman, “Dendrimer based terahertz time-domain spectroscopy and applications in molecular characterization,” J. Molecular Struc., vol. 1006, no. 1, pp. 59-65, Dec., 2011.
    • [107]D. J. Cook and R. M. Hochstrasser, “Intense terahertz pulses by fourwave rectification in air. Opt. Lett., vol. 25, no. 16, pp. 1210-1212, Aug., 2000.
    • [108]A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. Khan, and P. Günter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” JOSA B, vol. 23, no. 9, pp. 1822-1835, Sept., 2006.
    • [109]A. G. Stepanov, L. Bonacina, S. V. Chekalin, and J. P. Wolf, “Generation of 30 μJ single-cycle terahertz pulses at 100 Hz repetition rate by optical rectification,” Opt. Lett., vol. 33, no. 21, pp. 2497-2499, Nov., 2008..
    • [110]J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of highenergy terahertz sources based on optical rectification,” Opt. Exp., vol. 18, no. 12, pp. 12311-12327, Jun., 2010.
    • [111]L. R. Brothers, D. Lee, and N. C. Wong, “Terahertz optical frequency comb generation and phase locking of an optical parametric oscillator at 665 GHz,” Opt. Lett., vol. 19, no. 4, pp. 245-247, Feb., 1994.
    • [112]K. Kawase, J. I. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt., vol. 40, no. 9, pp. 1423-1426, Mar., 2001.
    • [113]T. Ikari, X. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Exp., vol. 14, no. 4, pp. 1604-1610, Feb., 2006.
    • [114]J. I. Shikata, K. Kawase, K. I. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO: LiNbO3 crystals,” IEEE Trans. on Microwave Theory and Techniques, vol. 48, no. 4, pp. 653-661, Apr., 2000.
    • [115]J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Müller, and K. Unterrainer, “Terahertz emission from GaAs and InAs in a magnetic field,” Phys. Rev. B, vol. 64, no. 8, pp. 085202-1-7, Aug., 2001.
    • [116]M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B, vol. 65, no. 16, pp. 165301-1-8, Mar., 2002.
    • [117]G. K. Kitaeva, “Terahertz generation by means of optical lasers,” Laser Phys. Lett., vol. 5, no. 8, pp. 559-576, May., 2008.
    • [118]W. M. Fisher and S. C. Rand, “Optically-induced charge separation and terahertz emission in unbiased dielectrics,” J. Appl. Phys., vol. 109, no. 6, pp. 064903-1-6, Mar., 2011.
    • [119]K. Suizu and K. Kawase, “Terahertz-wave generation in a conventional optical fiber,” Opt. Lett., vol. 32, no. 20, pp. 2990-2992, Oct., 2007.
    • [120]P. Zhouand and D. Fan, “Terahertz-wave generation by surface-emitted four-wave mixing in optical fiber,” Chinese Opt. Letts., vol. 9, no. 5, pp. 051902-1-4, May, 2011.
    • [121]M. Qasymeh, “Terahertz Generation in an Electrically Biased Optical Fiber: A Theoretical Investigation,” International Journal of Optics, vol. 2012, no. 486849, pp. 1-6, 2012.
    • [122]A. Barh, R. K. Varshney, G. P. Agrawal, B. M. A. Rahman, and B. P. Pal, “Plastic fiber design for THz generation through wavelength translation,” Opt. Lett., vol. 40, no. 9, pp. 2107-2110, May, 2015.
    • [123]M. Yi, K. Lee, J. Lim, Y. Hong, Y. D. Jho, and J. Ahn, “Terahertz waves emitted from an optical fiber,” Opt. Exp., vol. 18, no. 13, pp. 13693-13699, Jun., 2010.
    • [124]G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. Academic, San Diego, Calif., 2013.
    • [125]T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett., vol. 25, no. 19, pp. 1415-1417, Oct., 2000.
    • [126]A. Barh, S. Ghosh, R. K. Varshney, B. P. Pal, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Mid-IR fiber optic light source around 6 μm through parametric wavelength translation,” Laser Physics, vol. 24, no. 11, pp. 115401-1-7, Nov., 2014.
    • [127]A. Barh, S. Ghosh, R. K. Varshney, and B. P. Pal, “An efficient broadband mid-wave IR fiber optic light source: design and performance simulation,” Opt. Exp., vol. 21, no. 8, pp. 9547-9555, Apr., 2013.
    • [128]http://www.rp-photonics.com/silica_fibers.html [129]Y. Avestisyan, C. Zhang, I. Kawayama, H. Murakami, T. Somekawa, H. Chosrowjan, M. Fujita, and M. Tonouchi, “Terahertz generation by optical rectification in lithium niobate crystal using a shadow mask,” Opt. Exp., vol. 20, no. 23, pp. 25752-25757, Nov., 2012.
    • [130]www.rp-photonics.com/sum_and_difference_frequency_generation.html [131]J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics, vol. 3, no. 2, pp. 85-90, Jan., 2009.
    • [132]F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett., vol. 16, no. 4, pp. 1065-1067, Apr., 2004.
    • [133]P. S. J. Russell, “Photonic crystal fibers,” Science, vol. 299, no. 5605, pp. 358-362, Jan., 2003.
    • [134]B. Eggleton, C. Kerbage, P. Westbrook, R. Windeler, A. Hale, “Microstructured optical fiber devices,” Opt. Exp., vol. 9, no. 13, pp. 698-713, Dec., 2001.
    • [135]Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Society, vol. 49, no. 2, pp. 513-517, Aug., 2006.
    • [136] M. van Eijkelenborg, M. Large, A. Argyros, J. Zagari, S. Manos, N. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. Nicorovici, “Microstructured polymer optical fibre,” Opt. Exp., vol. 9, no. 7, pp. 319-327, Sept., 2001.
    • [137]H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett., vol. 80, no. 15, pp. 2634-2636, Apr., 2002.
    • [138]A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Exp., vol. 16, no. 9, pp. 6340-6351, Apr., 2008.
    • [139]T. Kaino and Y. Katayama, “Polymers for optoelectronics,” Polymer Eng. and Sc., vol. 29, no. 17, pp. 1209-1214, Sept., 1989.
    • [140]R. Pizzoferrato, M. Marinelli, U. Zammit, F. Scudieri, S. Martellucci, and M. Romagnoli, “Optically induced reorientational birefringence in an artificial anisotropic Kerr medium,” Opt. Comm., vol. 68, no. 3, pp. 231-234, Oct., 1988.
    • [141]A. Barh, S. Ghosh, R. K. Varshney, and B. P. Pal, “Ultra-large mode area microstructured core chalcogenide fiber design for mid-IR beam delivery,” Opt. Comm., vol. 311, pp. 129-133, Jan., 2013.
    • [142]http://en.wikipedia.org/wiki/Electric_power_transmission [143]http://inventors.about.com/library/weekly/aa980407.htm [144]G. Hasnain, J. R. Whinnery, and A. Dienes, “Dispersion of picosecond pulses in coplanar transmission lines,” IEEE Trans. on Microwave Theory Techniques, vol. 34, no. 6, pp. 738-741, Jun., 1986.
    • [145]M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. on Microwave Theory and Techniques, vol. 39, no. 6, pp. 910-916, Jun., 1991.
    • [146]G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” JOSA B, vol. 17, no. 5, pp. 851-863, May, 2000.
    • [147]R. Mendis D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Letts., vol. 26, no. 11, pp. 846- 848, Jun., 2001.
    • [148]K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nat. Lett., vol. 432, no. 7015, pp. 376-379, Nov., 2004.
    • [149]H. Pahlevaninezhad, T. E. Darcie, and B. Heshmat, “Two-wire waveguide for terahertz,” Opt. Exp., vol. 18, no. 7, pp. 7415-7420, Mar., 2010.
    • [150]M. Wachter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett., vol. 90, no. 6, pp. 061111-1-3, Feb., 2007.
    • [151]W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, no. 6950, pp. 824-830, Aug., 2003.
    • [152]T. I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett., vol. 88, no. 6, pp. 061113-1-3, Feb., 2006.
    • [153]W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Exp., vol. 16, no. 9, pp. 6216-6226, Apr., 2008.
    • [154]B. M. A. Rahman, A. Quadir, H. Tanvir, and K. T. V. Grattan, “Characterization of plasmonic modes in a low-loss dielectric-coated hollow core rectangular waveguide at terahertz frequency,” IEEE Photonics Journal, vol. 3, no. 6, pp. 1054-1066, Dec., 2011.
    • [155]S. A. Malekabadi, F. Boone, D. Deslandes, D. Morris, and S. Charlebois, “Low-loss low-dispersive high-resistivity silicon dielectric slab waveguide for THz region,” in IEEE Microwave Symposium Digest (IMS), 2013, pp. 1-3.
    • [156]M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Exp., vol. 14, no. 21, pp. 9944-9954, Oct., 2006.
    • [157]J. Balakrishnan, B. M. Fischer, and D. Abbott, “Sensing the hygroscopicity of polymer and copolymer materials using terahertz time-domain spectroscopy,” Appl. Opt., vol. 48, no. 12, pp. 2262-2266, Apr., 2009.
    • [158]L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett., vol. 31, no. 3, pp. 308-310, Feb., 2006.
    • [159]M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys., vol. 43, no. 2B, pp. L317-L319, Feb., 2004.
    • [160]T. Barwicz and H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol., vol. 23, no. 9, pp. 2719-2732, Sept., 2005.
    • [161]K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Exp., vol. 17, no. 10, pp. 8592-8601, May, 2009.
    • [162]A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett., vol. 92, no. 7, pp. 071101-1-3, Feb., 2008.
    • [163]S. Atakaramians, S. Afshar V, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Exp., vol. 16, no. 12, pp. 8845-8854, Jun., 2008.
    • [164]M. Uthman, B. M. A. Rahman, N. Kejalakshmy, A. Agrawal, and K. T. V. Grattan, “Design and characterization of low-loss porous-core photonic crystal fiber,” IEEE Photonics Journal, vol. 4, no. 6, pp. 2315- 2325, Dec., 2012.
    • [165]A. Dupuis, J. F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Exp., vol. 17, no. 10, pp. 8012-8028, May, 2009.
    • [166]S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Exp., vol. 17, no. 16, pp. 14053-15062, Aug., 2009.
    • [167]A. Dupuis, A. Mazhorova, F. Desevedavy, M. Roze, and M. Skorobogatiy, “Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique,” Opt. Exp., vol. 18, no. 13, pp. 13813-13828, Jun., 2010.
    • [168]S. Atakaramians, S. Afshar V., M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Appl. Phys. Lett., vol. 98, no. 12, pp. 121104-1-3, Mar., 2011.
    • [169]J. J. Bai, J. N. Li, H. Zhang, H. Fang, and S. J. Chang, “A porous terahertz fiber with randomly distributed air holes,” Appl. Phys. B., vol. 103, no. 2, pp. 381-386, Dec., 2010.
    • [170]M. Rozé, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Exp., vol. 19, no. 10, pp. 9127-9138, May, 2011.
    • [171]N. N. Chen, J. Liang, and L. Y. Ren, “High-birefringence, low-loss porous fiber for single-mode terahertz-wave guidance,” Appl. Opt., vol. 52, no. 21, pp. 5297-5302, Jul., 2013.
    • [172]R. Islam, G. K. M. Hasanuzzaman, M. S. Habib, S. Rana, and M. A. G. Khan, “Low-loss rotated porous core hexagonal single-mode fiber in THz regime,” Optical Fiber Technology, May, 2015 (in press).
    • [173]T. Ma, A. Markov, L. Wang, and M. Skorobogatiy, “Graded index porous optical fibers-dispersion management in terahertz range,” Opt. Exp., vol. 23, no. 6, pp. 7856-7869, Mar., 2015.
    • [174]J. Joannopoulos, S. Johnson, J. Winn, and R. Meade. Photonic Crystals: Molding the Flow of Light, 2nd Edition, Princeton University Press, New Jersey, 2008.
    • [175]P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” JOSA, vol. 68, no. 9, pp. 1196-1201, Sept., 1978.
    • [176]S. Dasgupta, B. P. Pal, and M. R. Shenoy, “Photonic bandgap guided Bragg fibers,” in Guided Wave Optical Components and Devices: Basics, Technology and Applications, B. P. Pal, ed., Elsevier/Academic Press, Burlington, 2006, pp. 71-82.
    • [177]J. C. Knight, J. Broeng, T. A. Birks, and P. Russell, “Photonic band gap guidance in optical fibers,” Science, vol. 282, no. 5393, pp. 1476-1478, Nov., 1998.
    • [178]M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett., vol. 90, no. 11, pp. 113514-1-3, Mar., 2007.
    • [179]R. J. Yu, B. Zhang, Y. Q. Zhang, C. Q. Wu, Z. G. Tian, and X. Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobwebstructured cladding for terahertz waveguiding,” IEEE Photonics Technol. Lett., vol. 19, no. 12, pp. 910-912, Jun., 2007.
    • [180]C. S. Ponseca Jr, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett., vol. 33, no. 9, pp. 902-904, May, 2008.
    • [181]A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg fibers,” JOSA B, vol. 28, no. 4, pp. 896-907, Apr., 2011.
    • [182]Y. F. Geng, X. L. Tan, P. Wang, J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B, vol. 91, no. 2, pp. 333-336, Apr., 2008.
    • [183]L. Vincetti, “Hollow core photonic band gap fiber for THz applications,” Microwave and Opt. Technol. Lett., vol. 51, no. 7, pp. 1711-1714, Jul., 2009.
    • [184]A. Barh, R. K. Varshney, B. P. Pal, G. P. Agrawal, and B. M. A. Rahman, “Low-loss hollow core plastic photonic band-gap fiber for efficient THz transmission,” in International Conference on Fibre Optics and Photonics, 2014, pp. T2D-6.
    • [185]H. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Fabrication and characterization of porous-core honeycomb bandgap THz fibers,” Opt. Exp., vol. 20, no. 28, pp. 29507-29517, Dec., 2012.
    • [186]J. Fan, Y. Li, X. Zhang, M. Hu, L. Chai, and C. Wang, “Predicting Mode Properties of Porous-Core Honeycomb Bandgap THz Fibers by Semi-Analytical Theory,” J. Lightwave Technol., vol. 33, no. 10, pp. 1931-1936, May, 2015.
    • [187]J. Liang, L. Ren, N. Chen, and C. Zhou, “Broadband, low-loss, dispersion flattened porous-core photonic bandgap fiber for terahertz (THz)-wave propagation,” Opt. Comm., vol. 295, pp. 257-261, May, 2013.
    • [188]P. Laurin, M. Girard, A. Markov, M. Skorobogatiy, “Hollow core terahertz optical fibers with hyperuniform disordered dielectric reflectors,” in Proc. IEEE IRMMW-THz, 2014, pp. 1-2.
    • [189]J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett., vol. 92, no. 6, pp. 064105-1-3, Feb., 2008.
    • [190]J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Opt. Exp., vol. 19, no. 19, pp. 18470-18478, Sept., 2011.
    • [191]W. Lu, S. Lou, X. Wang, Y. Shen, and X. Sheng, “Demonstration of low-loss flexible fiber with Zeonex tube-lattice cladding for Terahertz transmission,” in Optical Fiber Communication Conference, 2015, pp. M3D-2.
    • [192]T. Hidaka, H. Minamide, H. Ito, J. I. Nishizawa, K. Tamura, and S. Ichikawa, “Ferroelectric PVDF cladding terahertz waveguide,” J. Lightwave Technol., vol. 23, no. 8, pp. 2469-2473, Aug., 2005.
    • [193]J. Anthony, R. Leonhardt, and A. Argyros, “Hybrid hollow core fibers with embedded wires as THz waveguides,” Opt. Exp., vol. 21, no. 3, pp. 2903-2912, Feb., 2013.
    • Ajanta Barh is Ph.D. student at IIT Delhi, obtained B.Sc.' 2008 from Calcutta University and M.Sc.'2010 all in Physics from IIT Delhi. Her research interests include Specialty fibers for mid-IR and THz wavelengths, Si-photonics, Non-linear optics, guided wave components. She is student member of OSA and OSI; authored/co-authored of more than 30 articles; Received Best Student Paper award in IEEE-CODEC 2012, OSA-PHOTONICS 2014, SPIE-ICOP 2015 conferences.
    • Bishnu P. Pal is Professor of Physics at Mahindra École Centrale Hyderabad India since July 1st 2014 after retirement as Professor of Physics from IIT Delhi; Ph.D.'1975 from IIT Delhi; Fellow of OSA and SPIE; Senior Member IEEE; Honorary Foreign Member Royal Norwegian Society for Science and Arts; Member OSA Board of Directors (2009- 11); Distinguished Lecturer IEEE Photonics Society (2005- 07).
    • Govind P. Agrawal is Wyant Professor of Optics at the Institute of Optics, University of Rochester NY where he joined in 1989. He received his Ph.D.'74 from IIT Delhi; authored/coauthored over 400 research papers, and eight books, recipient of the IPS Quantum Electronics Award'12, Fellow of OSA, IEEE, and member OSA Board (2009-10).
    • R. K. Varshney received Ph.D. degree from the Indian Institute of Technology Delhi in 1987, where he is currently Professor of Physics. He was awarded Marie Curie Fellowship and Fullbright Fellowship. He is an author/coauthor of more than 125 research papers, and two books. He has keen interest in the fields of Fiber and Integrated Optics, Specialty fibers, Fiber Optic Sensors, Non-linear Optics.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Cite this article