LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Sagués, F.; Reigada, R.; Sancho, J.M.; Hillary, R.M.; Bees, M.A. (2003)
Publisher: American Institute of Physics
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Fluid Dynamics
Identifiers:doi:10.1063/1.1584930
We present an analytical scheme, easily implemented numerically, to generate synthetic Gaussian 2D turbulent flows by using linear stochastic partial differential equations, where the noise term acts as a random force of well-prescribed statistics. This methodology leads to a divergence-free, isotropic, stationary and homogeneous velocity field, whose characteristic parameters are well reproduced, in particular the kinematic viscosity and energy spectrum. This practical approach to tailor a turbulent flow is justified by its versatility when analizing different physical processes occurring in advectely mixed systems. Here, we focuss on an application to study the dynamics of Planktonic populations in the ocean.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. A.S. Monin and A.M. Yaglom, Statistical Fluid Mechanics (MIT, Cambridge, MA, 1975). 2. W.D. McComb, The Physics of Fluid Turbulence (Oxford University, Oxford, 1990). 3. A.C. Martí, J.M. Sancho, F. Sagués and A. Careta, Phys. Fluids 9, 1078 (1997). 4. R.H. Kraichnan, Phys. Fluids 13, 22 (1970).
    • 5. R. Reigada, A.C. Martí, F. Sagués, I.M. Sokolov and J.M. Sancho, Phys. Rev. E 62, 4997 (2000). 6. R. Reigada, F. Sagués and J.M. Sancho, Phys. Rev. E 64, 026307 (2001). 7. R. Reigada, F. Sagués, I.M. Sokolov, J.M. Sancho and A. Blumen, Phys. Rev. Lett. 78, 741 (1997). 8. R. Reigada, F. Sagués and J.M. Sancho, J. Chem. Phys. 117, 258 (1998). 9. A.C. Martí, F. Sagués and J. M. Sancho, Phys. Fluids 9, 3851 (1997). 10. A. M. Lacasta, J. M. Sancho and F. Sagués, Phys. Rev. Lett. 75, 1791 (1995). 11. M.R. Maxey and J.J. Riley, Phys. Fluids 26, 883 (1983).
    • 12. M.R. Maxey, J. Fluid Mech. 174, 441 (1987).
    • 13. P. J. S. Franks, Limnol. Oceanogr. 42, 1297 (1997).
    • 14. E.R. Abraham, Nature 39, 577 (1998).
    • 15. C.L. Folt and C.W. Burns, TREE 14 300 (1999).
    • 16. J.E. Truscott and J. Brindley, Bull. Math. Biol. 56, 981 (1994). 17. Z. Neufeld, P.H. Haynes, V.C. Garçon and J.Sudre, Geophys. Res. Lett. 29, 1029 (2002). 18. A. Okubo, Deep-Sea Research 18, 789 (1971).
    • 19. K.D. Squires and H. Yamazaki, Deep-Sea Research I 42, 1989 (1995). 20. R. Reigada, R.M. Hillary, M.A. Bees, J.M. Sancho and F. Sagués, (in preparation). 21. J.M. Sancho, M.A. Santos, S. Alonso and F. Sagués, (in this volume).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article