LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Stein, Thorwald H. M.; Holloway, Chris E.; Tobin, Isabelle; Bony, Sandrine (2017)
Publisher: American Meteorological Society
Languages: English
Types: Article
Subjects:
Using the satellite-infrared-based Simple Convective Aggregation Index (SCAI) to determine the degree of aggregation, 5 years of CloudSat-CALIPSO cloud profiles are composited at a spatial scale of 10 degrees to study the relationship between cloud vertical structure and aggregation.\ud For a given large-scale vertical motion and domain-averaged precipitation rate, there is a large decrease in anvil cloud (and in cloudiness as a whole) and an increase in clear sky and low cloud as aggregation increases.\ud The changes in thick anvil cloud are proportional to the changes in total areal cover of brightness temperatures below 240 K (cold cloud area, CCA), which is negatively correlated with SCAI.\ud Optically thin anvil cover decreases significantly when aggregation increases, even for a fixed CCA, supporting previous findings of a higher precipitation efficiency for aggregated convection.\ud Cirrus, congestus, and mid-level clouds do not display a consistent relationship with the degree of aggregation.\ud We present the lidar-observed low-level cloud cover (where the lidar is not attenuated) as our best estimate of the true low-level cloud cover and show that it increases as aggregation increases.\ud Qualitatively, the relationships between cloud distribution and SCAI do not change with sea-surface temperature, while cirrus clouds are more abundant and low-level clouds less at higher sea-surface temperatures.\ud For the observed regimes, the vertical cloud profile varies more evidently with SCAI than with mean precipitation rate.\ud These results confirm that convective scenes with similar vertical motion and rainfall can be associated with vastly different cloudiness (both high and low cloud) and humidity depending on the degree of convective aggregation.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Allan, R., and B. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321, 1481- 1484, doi:10.1126/science.1160787.
    • Anselmo, T., and Coauthors, 2006: Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO). NASA Langley Research Center Doc. PC-SCI-503, 100 pp. [Available online at http://www-calipso.larc.nasa.gov/products/CALIPSO_DPC_ Rev2x4.pdf.]
    • Arkin, P. A., and B. N. Meisner, 1987: The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982-84. Mon. Wea. Rev., 115, 51-74, doi:10.1175/1520-0493(1987)115,0051:TRBLSC.2.0.CO;2.
    • Arnold, N. P., and D. A. Randall, 2015: Global-scale convective aggregation: Implications for the Madden-Julian oscillation. J. Adv. Model. Earth Syst., 7, 1499-1518, doi:10.1002/2015MS000498.
    • Battaglia, A., J. M. Haynes, T. L'Ecuyer, and C. Simmer, 2008: Identifying multiple-scattering-affected profiles in CloudSat observations over the oceans. J. Geophys. Res., 113, D00A17, doi:10.1029/2008JD009960.
    • Bony, S., and Coauthors, 2015: Clouds, circulation and climate sensitivity. Nat. Geosci., 8, 261-268, doi:10.1038/ngeo2398.
    • --, B. Stevens, D. Coppin, T. Becker, K. A. Reed, A. Voigt, and B. Medeiros, 2016: Thermodynamic control of anvil cloud amount. Proc. Natl. Acad. Sci. USA, 113, 8927-8932, doi:10.1073/ pnas.1601472113.
    • Bretherton, C. S., P. N. Blossey, and M. Khairoutdinov, 2005: An energy-balance analysis of deep convective self-aggregation above uniform SST. J. Atmos. Sci., 62, 4273-4292, doi:10.1175/JAS3614.1.
    • Chepfer, H., S. Bony, D. Winker, M. Chiriaco, J.-L. Dufresne, and G. Sèze, 2008: Use of CALIPSO lidar observations to evaluate the cloudiness simulated by a climate model. Geophys. Res. Lett., 35, L15704, doi:10.1029/2008GL034207.
    • Christensen, M. W., G. G. Carrió, G. L. Stephens, and W. R. Cotton, 2013a: Radiative impacts of free-tropospheric clouds on the properties of marine stratocumulus. J. Atmos. Sci., 70, 3102-3118, doi:10.1175/JAS-D-12-0287.1.
    • --, G. L. Stephens, and M. D. Lebsock, 2013b: Exposing biases in retrieved low cloud properties from CloudSat: A guide for evaluating observations and climate data. J. Geophys. Res. Atmos., 118, 12 120-12 131, doi:10.1002/2013JD020224.
    • Coppin, D., and S. Bony, 2015: Physical mechanisms controlling the initiation of convective self-aggregation in a general circulation model. J. Adv. Model. Earth Syst., 7, 2060-2078, doi:10.1002/2015MS000571.
    • Craig, G. C., 1996: Dimensional analysis of a convecting atmosphere in equilibrium with external forcing. Quart. J. Roy. Meteor. Soc., 122, 1963-1967, doi:10.1002/qj.49712253611.
    • Davis, C., 2015: The formation of moist vortices and tropical cyclones in idealized simulations. J. Atmos. Sci., 72, 3499-3516, doi:10.1175/JAS-D-15-0027.1.
    • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553-597, doi:10.1002/qj.828.
    • Delanoë, J., and R. J. Hogan, 2010: Combined CloudSatCALIPSO-MODIS retrievals of the properties of ice clouds. J. Geophys. Res., 115, D00H29, doi:10.1029/2009JD012346.
    • --, --, R. M. Forbes, A. Bodas-Salcedo, and T. H. M. Stein, 2011: Evaluation of ice cloud representation in the ECMWF and UK Met Office models using CloudSat and CALIPSO data. Quart. J. Roy. Meteor. Soc., 137, 2064-2078, doi:10.1002/qj.882.
    • Emanuel, K., A. A. Wing, and E. M. Vincent, 2014: Radiativeconvective instability. J. Adv. Model. Earth Syst., 6, 75-90, doi:10.1002/2013MS000270.
    • Hartmann, D. L., and K. Larson, 2002: An important constraint on tropical cloud-climate feedback. Geophys. Res. Lett., 29, 1951, doi:10.1029/2002GL015835.
    • Holloway, C. E., and S. J. Woolnough, 2016: The sensitivity of convective aggregation to diabatic processes in idealized radiative-convective equilibrium simulations. J. Adv. Model. Earth Syst., 8, 166-195, doi:10.1002/2015MS000511.
    • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 38-55, doi:10.1175/JHM560.1.
    • Igel, M. R., A. J. Drager, and S. C. van den Heever, 2014: A CloudSat cloud object partitioning technique and assessment and integration of deep convective anvil sensitivities to sea surface temperature. J. Geophys. Res. Atmos., 119, 10 515- 10 535, doi:10.1002/2014JD021717.
    • Janowiak, J. E., R. J. Joyce, and Y. Yarosh, 2001: A real-time global half-hourly pixel-resolution infrared dataset and its applications. Bull. Amer. Meteor. Soc., 82, 205-217, doi:10.1175/1520-0477(2001)082,0205:ARTGHH.2.3.CO;2.
    • Jeevanjee, N., and D. M. Romps, 2013: Convective selfaggregation, cold pools, and domain size. Geophys. Res. Lett., 40, 994-998, doi:10.1002/grl.50204.
    • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 2397-2418, doi:10.1175/1520-0442 (1999)012,2397:TCOTC.2.0.CO;2.
    • Khairoutdinov, M., and K. Emanuel, 2010: Aggregated convection and the regulation of climate. 29th Conf. on Hurricanes and Tropical Meteorology, Tucson, AZ, Amer. Meteor. Soc., P2.69. [Available online at https://ams.confex.com/ams/ 29Hurricanes/techprogram/paper_168418.htm.]
    • Langhans, W., K. Yeo, and D. M. Romps, 2015: Lagrangian investigation of the precipitation efficiency of convective clouds. J. Atmos. Sci., 72, 1045-1062, doi:10.1175/JAS-D-14-0159.1.
    • Liu, C., and E. J. Zipser, 2009: ''Warm rain'' in the tropics: Seasonal and regional distributions based on 9 yr of TRMM data. J. Climate, 22, 767-779, doi:10.1175/2008JCLI2641.1.
    • Liu, Z., R. Marchand, and T. Ackerman, 2010: A comparison of observations in the tropical western Pacific from ground-based and satellite millimeter-wavelength cloud radars. J. Geophys. Res., 115, D24206, doi:10.1029/2009JD013575.
    • Marchand, R., G. G. Mace, T. Ackerman, and G. Stephens, 2008: Hydrometeor detection using CloudSat-An Earth-orbiting 94-GHz cloud radar. J. Atmos. Oceanic Technol., 25, 519-533, doi:10.1175/2007JTECHA1006.1.
    • --, J. Haynes, G. G. Mace, T. Ackerman, and G. Stephens, 2009: A comparison of simulated cloud radar output from the multiscale modeling framework global climate model with CloudSat cloud radar observations. J. Geophys. Res., 114, D00A20, doi:10.1029/2008JD009790.
    • Mauritsen, T., and B. Stevens, 2015: Missing iris effect as a possible cause of muted hydrological change and high climate sensitivity in models. Nat. Geosci., 8, 346-351, doi:10.1038/ngeo2414.
    • Muller, C., and I. M. Held, 2012: Detailed investigation of the selfaggregation of convection in cloud-resolving simulations. J. Atmos. Sci., 69, 2551-2565, doi:10.1175/JAS-D-11-0257.1.
    • --, and S. Bony, 2015: What favors convective aggregation and why? Geophys. Res. Lett., 42, 5626-5634, doi:10.1002/2015GL064260.
    • Nair, A. K. M., K. Rajeev, M. K. Mishra, B. V. Thampi, and K. Parameswaran, 2012: Multiyear lidar observations of the descending nature of tropical cirrus clouds. J. Geophys. Res., 117, D18201, doi:10.1029/2011JD017406.
    • Pendergrass, A., and D. Hartmann, 2014: Changes in the distribution of rain frequency and intensity in response to global warming. J. Climate, 27, 8372-8383, doi:10.1175/JCLI-D-14-00183.1.
    • Qu, X., A. Hall, S. A. Klein, and A. M. DeAngelis, 2015: Positive tropical marine low-cloud cover feedback inferred from cloudcontrolling factors. Geophys. Res. Lett., 42, 7767-7775, doi:10.1002/2015GL065627.
    • Reed, K. A., B. Medeiros, J. T. Bacmeister, and P. H. Lauritzen, 2015: Global radiative-convective equilibrium in the Community Atmosphere Model, version 5. J. Atmos. Sci., 72, 2183- 2197, doi:10.1175/JAS-D-14-0268.1.
    • Stein, T. H. M., J. Delanoë, and R. J. Hogan, 2011a: A comparison among four different retrieval methods for ice-cloud properties using data from CloudSat, CALIPSO, and MODIS. J. Appl. Meteor. Climatol., 50, 1952-1969, doi:10.1175/2011JAMC2646.1.
    • --, D. J. Parker, J. Delanoë, N. S. Dixon, R. J. Hogan, P. Knippertz, R. I. Maidment, and J. H. Marsham, 2011b: The vertical cloud structure of the West African monsoon: A 4 year climatology using CloudSat and CALIPSO. J. Geophys. Res., 116, D22205, doi:10.1029/2011JD016029.
    • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train. Bull. Amer. Meteor. Soc., 83, 1771-1790, doi:10.1175/BAMS-83-12-1771.
    • --, S. van den Heever, and L. A. Pakula, 2008: Radiative-convective feedbacks in idealized states of radiative-convective equilibrium. J. Atmos. Sci., 65, 3899-3916, doi:10.1175/2008JAS2524.1.
    • Sui, C.-H., X. Li, and M.-J. Yang, 2007: On the definition of precipitation efficiency. J. Atmos. Sci., 64, 4506-4513, doi:10.1175/ 2007JAS2332.1.
    • Tan, J., C. Jakob, W. Rossow, and G. Tselioudis, 2015: Increases in tropical rainfall driven by changes in frequency of organized deep convection. Nature, 519, 451-454, doi:10.1038/nature14339.
    • Tobin, I., S. Bony, and R. Roca, 2012: Observational evidence for relationships between the degree of aggregation of deep convection, water vapor, surface fluxes, and radiation. J. Climate, 25, 6885-6904, doi:10.1175/JCLI-D-11-00258.1.
    • --, --, C. E. Holloway, J.-Y. Grandpeix, G. Sèze, D. Coppin, S. J. Woolnough, and R. Roca, 2013: Does convective aggregation need to be represented in cumulus parameterizations? J. Adv. Model. Earth Syst., 5, 692-703, doi:10.1002/jame.20047.
    • Tompkins, A. M., and G. C. Craig, 1998: Radiative-convective equilibrium in a three-dimensional cloud-ensemble model. Quart. J. Roy. Meteor. Soc., 124, 2073-2097, doi:10.1002/qj.49712455013.
    • Trenberth, K., A. Dai, R. Rasmussen, and D. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 1205-1217, doi:10.1175/BAMS-84-9-1205.
    • van de Poll, H. M., H. Grubb, and I. Astin, 2006: Sampling uncertainty properties of cloud fraction estimates from random transect observations. J. Geophys. Res., 111, D22218, doi:10.1029/2006JD007189.
    • Virts, K. S., and J. M. Wallace, 2010: Annual, interannual, and intraseasonal variability of tropical tropopause transition layer cirrus. J. Atmos. Sci., 67, 3097-3112, doi:10.1175/2010JAS3413.1.
    • Wing, A. A., and K. A. Emanuel, 2014: Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations. J. Adv. Model. Earth Syst., 6, 59-74, doi:10.1002/2013MS000269.
    • --, and T. W. Cronin, 2016: Self-aggregation of convection in long channel geometry. Quart. J. Roy. Meteor. Soc., 142, 1-15, doi:10.1002/qj.2628.
    • --, S. Camargo, and A. H. Sobel, 2016: Role of radiativeconvective feedbacks in spontaneous tropical cyclogenesis in idealized numerical simulations. J. Atmos. Sci., 73, 2633-2642, doi:10.1175/JAS-D-15-0380.1.
    • Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Climate, 19, 6425-6432, doi:10.1175/JCLI3988.1.
    • Zelinka, M. D., and D. L. Hartmann, 2010: Why is longwave cloud feedback positive? J. Geophys. Res., 115, D16117, doi:10.1029/ 2010JD013817.
    • Zhang, D., Z. Wang, and D. Liu, 2010: A global view of midlevel liquid-layer topped stratiform cloud distribution and phase partition from CALIPSO and CloudSat measurements. J. Geophys. Res., 115, D00H13, doi:10.1029/2009JD012143.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    44
    44%
  • No similar publications.

Share - Bookmark

Funded by projects

  • EC | EUREC4A

Cite this article