LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Litchfield, Damien; Donovan, Tim (2017)
Publisher: European Association for Research on Learning and Instruction (EARLI)
Languages: English
Types: Article
Subjects: Z215, Z21, Z261

Classified by OpenAIRE into

ACM Ref: ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION
How we make sense of what we see and where best to look is shaped by our experience, our current task goals and how we first perceive our environment. An established way of demonstrating these factors work together is to study how eye movement patterns change as a function of expertise and to observe how experts can solve complex tasks after only very brief glances at a domain-specific image. The primary focus of this paper is to introduce an innovative gaze-contingent method called the ‘Flash-Preview Moving Window’ (FPMW) paradigm (Castelhano & Henderson, 2007), which was recently developed to understand our shared expertise in scene perception and how our first glimpse of a scene is used to guide our eye movement behaviour. In keeping with this special issue on visual expertise and medicine, this paper will highlight how the FPMW paradigm has the potential to resolve long-standing theoretical issues as to how, right from the very first glance, experts are able to process domain-specific images and guide their eye movements better than novices. Since FPMW is a gaze-contingent eye-tracking method, the paper will first outline the current methodological and theoretical frontier, and how the FPMW paradigm bridges established methods used to investigate visual expertise. The paper will discuss a recent example in which the FPMW was employed to investigate medical image perception expertise for the first time (Litchfield & Donovan, 2016), and by discussing the insights and challenges this method offers, this should ultimately deepen our understanding of visual expertise.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Båth, M., Håkansson, M., Börjesson, S., Kheddache, S., Grahn, A., Ruschin, M., . . . Månsson, L. G. (2005). Nodule detection in digital chest radiography: Introduction to the RADIUS chest trial. Radiation Protection Dosimetry, 114, 85-91.
    • Bertram, R., Helle, L., Kaakinen, J. K., & Svedström, E. (2013). The effect of expertise on eye movement behaviour in medical image perception. PloS One, 8, e66169.
    • Busey, T. A., & Vanderkolk, J. R. (2005). Behavioral and electrophysiological evidence for configural processing in fingerprint experts. Vision Research, 45, 431-448.
    • Buswell, G. (1935). How People Look at Pictures, University of Chicago Press.
    • Carmody, D. P., Nodine, C. F., & Kundel, H. L. (1980). Global and segmented search for lung nodules of different edge gradients. Investigative Radiology, 15, 224-233.
    • Carmody, D. P., Nodine, C. F., & Kundel, H. L. (1981). Finding lung nodules with and without comparative visual search. Perception & Psychophysics, 29, 594-598.
    • Castelhano, M. S., & Heaven, C. (2011). Scene context influences without scene gist: Eye movements guided by spatial associations in visual search. Psychonomic Bulletin & Review, 18, 890-896.
    • Castelhano, M. S., & Henderson, J. M. (2007). Initial scene representations facilitate eye movement guidance in visual search. Journal of Experimental Psychology: Human Perception and Performance, 33, 753-763.
    • Castelhano, M. S., & Witherspoon, R. L. (2016). How you use it matters: Object function guides attention during visual search in scenes. Psychological Science, 27, 606-621.
    • Charness, N., Reingold, E. M., Pomplun, M., & Stampe, D. M. (2001). The perceptual aspect of skilled performance in chess: Evidence from eye movements. Memory & Cognition, 29, 1146-1152.
    • Cohen, M. A., Dennett, D. C., & Kanwisher, N. (2016). What is the bandwidth of perceptual experience? Trends in Cognitive Sciences, 20, 324-335.
    • Curby, K. M., Glazek, K., & Gauthier, I. (2009). A visual short-term memory advantage for objects of expertise. Journal of Experimental Psychology: Human Perception and Performance, 35, 94-107.
    • de Groot, A. D. (1946). Het denken van den schaker. Amsterdam: Noord Hollandsche.
    • de Groot, A. D. (1965). Thought and choice in chess. The Hague, Netherlands: Mouton.
    • Diamond, R., & Carey, S. (1986). Why faces are and are not special: an effect of expertise. Journal of Experimental Psychology: General, 115, 107-117.
    • Donovan, T., & Litchfield, D. (2013). Looking for cancer: Expertise related differences in searching and decision making. Applied Cognitive Psychology, 27, 43-49.
    • Drew, T., Evans, K. K., Võ, M. L. H., Jacobson, F. L., & Wolfe, J. M. (2013a). What can you see in a single glance and how might this guide visual search in medical images? Radiographics, 33, 263-274.
    • Drew, T., Vo, M. L. H., Olwal, A., Jacobson, F., Seltzer, S. E., & Wolfe, J. M. (2013b). Scanners and drillers: Characterizing expert visual search through volumetric images. Journal of vision, 13, 3.
    • Evans, K. K., Georgian-Smith, D., Tambouret, R., Birdwell, R. L., & Wolfe, J. M. (2013). The gist of the abnormal: Above-chance medical decision making in the blink of an eye. Psychonomic Bulletin & Review, 20, 1170-1175.
    • Fei-Fei, L., Iyer, A., Koch, C., & Perona, P. (2007). What do we perceive in a glance of a real-world scene? Journal of Vision, 7, 1-29.
    • Friedman A. (1979). Framing pictures: the role of knowledge in automatized encoding and memory for gist. Journal of Experimental Psychology: General, 108, 316-355.
    • Gauthier, I., & Tarr, M. J. (1997). Becoming a “Greeble” expert: Exploring mechanisms for face recognition. Vision Research, 37, 1673-1682.
    • Gauthier, I., Tarr, M., & Bub, D. (2009). Perceptual expertise: Bridging brain and behavior. Oxford University Press.
    • Gegenfurtner, A., Lehtinen, E., & Säljö, R. (2011). Expertise differences in the comprehension of visualizations: a meta-analysis of eye-tracking research in professional domains. Educational Psychology Review, 23, 523-552.
    • Gobet, F. (2015). Understanding expertise: A multidisciplinary approach. London: Palgrave.
    • Henderson, J. M. (2007). Regarding scenes. Current Directions in Psychological Science, 16, 219-222.
    • Henderson, J. M., & Hollingworth, A. (1999). The role of fixation position in detecting scene changes across saccades. Psychological Science, 5, 438-443.
    • Henderson, J. M., Weeks, P. A., & Hollingworth, A. (1999). The effects of semantic consistency on eye movements during complex scene viewing. Journal of Experimental Psychology: Human Perception and Performance, 25,210-228.
    • Henderson, J. M., Pollatsek, A., & Rayner, K. (1989). Covert visual attention and extrafoveal information use during object identification. Perception & Psychophysics, 45, 196-208.
    • Hillstrom, A. P., Schloley, H., Liversedge, S. P., Benson, V. (2012). The effect of the first glimpse at a scene on eye movements during search. Psychomic Bulletin & Review, 19, 204-210.
    • Just, M. A., & Carpenter, P. A. (1984). Using eye fixations to study reading comprehension. In D. E. Kieras & M. A. Just (Eds.), New methods in reading comprehension research (pp. 151-182). Hillsdale: Erlbaum.
    • Kelley, T. A., Chun, M. M., & Chua, K. P. (2003). Effects of scene inversion on change detection of targets matched for visual salience. Journal of Vision, 3, 1-5.
    • Kompaniez-Dunigan, E., Abbey, C. K., Boone, J. M., & Webster, M. A. (2015). Adaptation and visual search in mammographic images. Attention, Perception, & Psychophysics, 77, 1081-1087.
    • Krupinski, E. A. (1995). Visual search of mammographic images: influence of lesion subtlety. Academic Radiology, 12, 965-969.
    • Krupinski, E. A. (1996). Visual scanning patterns of radiologists searching mammograms. Academic Radiology, 3, 137-144.
    • Kundel, H. L., & La Follette, P. S. (1972). Visual search patterns and experience with radiological images. Radiology, 103, 523-528.
    • Kundel, H. L., & Nodine, C. F. (1975). Interpreting chest radiographs without visual search. Radiology, 116, 527-532.
    • Kundel, H.L., Nodine, C.F., & Carmody, D.P. (1978). Visual scanning, pattern recognition, and decision making in pulmonary nodule detection. Investigative Radiology, 13, 175-181.
    • Kundel, H. L., Nodine, C. F., Conant, E. F., & Weinstein, S. P. (2007). Holistic component of image perception in mammogram interpretation: gaze-tracking study 1. Radiology, 242, 396-402.
    • Kundel, H. L., Nodine, C. F., Krupinski, E. A., Mello-Thoms, C. (2008). Using gaze-tracking data and mixture distribution analysis to support a holistic model. Academic Radiology, 15, 881-886.
    • Kundel, H. L., Nodine, C. F., & Toto, L. C. (1984). Eye movements and the detection of lung tumors in chest images. In A. G. Gale, & F. Johnson (Eds.). Theoretical and Applied Aspects of Eye Movement Research (pp. 297-304). North-Holland: Elsevier.
    • Kundel, H. L., Nodine, C. F., & Toto, L. C. (1991). Searching for lung nodules. The guidance of visual scanning. Investigative Radiology, 26, 777-781.
    • Litchfield, D., & Donovan T. (2016). Worth a quick look? Initial scene previews can guide eye movements as a function of domain-specific expertise but can also have unforeseen costs. Journal of Experimental Psychology: Human Perception and Performance.
    • Manning, D. J., Ethell, S., & Crawford, T. (2003). An eye-tracking AFROC study of the influence of experience and training on chest x-ray interpretation. SPIE, 5034, 257-266.
    • Manning, D. J., Ethell, S. C., & Donovan, T. (2004). Detection or decision errors? Missed lung cancer from the posteroanterior chest radiograph. British Journal of Radiology, 77, 231-235.
    • Manning, D. J., Ethell, S. C., Donovan, T., & Crawford, T. J. (2006). How do radiologists do it? The influence of experience and training on searching for chest nodules. Radiography, 12, 134-142.
    • McConkie, G. W., & Rayner, K. (1975). The span of the effective stimulus during a fixation in reading. Perception & Psychophysics, 17, 578-86.
    • Mugglestone, M. D., Gale, A. G., Cowley, H. C., & Wilson, A. R. M. (1995). Diagnostic performance on briefly presented mammographic images. SPIE, 2436, 106-115.
    • Nodine, C. F., & Krupinski, E. A. (1998). Perceptual skill, radiology expertise, and visual test performance with NINA and WALDO. Academic radiology, 5, 603-612.
    • Nodine, C. F., & Kundel, H. L. (1987). The cognitive side of visual search in radiology. In J. K., O'Regan, A. Levy-Schoen (Eds). Eye movements: From physiology to cognition (pp. 573-582). Amsterdam: Elsevier.
    • Nodine, C. F., & Mello-Thoms, C. (2010). The role of expertise in radiologic image interpretation. In E. Samei, E. Krupinski (Eds.), The Handbook of Medical Image Perception and Techniques (pp. 139- 156), New York: Cambridge University Press.
    • Nodine, C. F., Mello-Thoms, C., Kundel, H. L., & Weinstein, S. P. (2002). Time course of perception and decision making during mammographic interpretation. American Journal of Roentgenology, 179, 917- 923.
    • Oestmann, J. W., Greene, R., Bourgouin, P. M., Linetsky, L., & Llewellyn, H. J. (1993). Chest “gestalt” and detectability of lung lesions. European Journal of Radiology, 16, 154-157.
    • Oestmann, J. W., Greene, R., Kushner, D. C., Bourgouin, P. M., Linetsky, L., & Llewellyn, H. J. (1988). Lung lesions: correlation between viewing time and detection. Radiology, 166, 451-453.
    • Oliva, A., & Schyns, P. G. (1997). Coarse blobs or fine edges? Evidence that information diagnosticity changes the perception of complex visual stimuli. Cognitive Psychology, 34, 72-107.
    • Phillips, P., Boone, D., Mallett, S., Taylor, S. A., Altman, D. G., Manning, D., ... & Halligan, S. (2013). Method for Tracking Eye Gaze during Interpretation of Endoluminal 3D CT Colonography: Technical Description and Proposed Metrics for Analysis. Radiology, 267, 924-931.
    • Pollatsek, A., Bolozky, S., Well, A. D., & Rayner K. (1981). Asymmetries in the perceptual span for Israeli readers. Brain and Language, 14, 174-180.
    • Potter, M. C. (1976). Short-term conceptual memory for pictures. Journal of Experimental Psychology: Human Learning and Memory, 2, 509-522.
    • Reingold, E. M., & Sheridan, H. (2011). Eye movements and visual expertise in chess and medicine. In S. P. Liversedge, I. D. Gilchrist, S. Everling (Eds). The Oxford Handbook of Eye Movements (pp. 767-786). Oxford: Oxford University Press.
    • Rayner, K. (2009). Eye movements and attention in reading, scene perception, and visual search. The Quarterly Journal of Experimental Psychology, 62, 1457-1506.
    • Rayner, K., & Pollatsek, A. (1981). Eye movement control during reading: Evidence for direct control. The Quarterly Journal of Experimental Psychology, 33, 351-373.
    • Rayner, K., Slattery, T. J., & Bélanger, N. N. (2010). Eye movements, the perceptual span, and reading speed. Psychonomic Bulletin & Review, 17, 834-839.
    • Rayner, K., Smith, T. J., Malcom, G. L., & Henderson, J. M. (2009). Eye movements and visual encoding during scene perception. Psychological Science, 20, 6-10.
    • Schyns, P. G., & Oliva, A. (1994). From blobs to boundary edges: Evidence for time-and spatial-scaledependent scene recognition. Psychological Science, 5, 195-200.
    • Sowden, P. T., Davies, I. R., & Roling, P. (2000). Perceptual learning of the detection of features in X-ray images: a functional role for improvements in adults' visual sensitivity? Journal of Experimental Psychology: Human Perception and Performance, 26, 379-390.
    • Swensson, R. G. (1980). A two-stage detection model applied to skilled visual search by radiologists. Perception & Psychophysics, 27, 11-16.
    • Tatler, B. W. (2009). Current understanding of eye guidance. Visual Cognition, 17, 777-789.
    • Torralba, A., Oliva, A., Castelhano, M. S., & Henderson, J. M. (2006). Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search. Psychological Review, 113, 766-786.
    • Võ, M. L. H., & Henderson, J. M. (2010). The time course of initial scene processing for eye movement guidance in natural scene search. Journal of Vision, 10, 1-13.
    • Võ, M. L. H., & Henderson, J. M. (2011). Object-scene inconsistencies do not capture gaze: evidence from the flash-preview moving window paradigm. Attention, Perception & Psychophysics, 73, 1742-1753.
    • Võ, M. L. H., & Schneider, J. M. (2010). A glimpse is not a glimpse: Differential processing of flashed scene previews leads to differential target search benefits. Visual Cognition, 18, 171-200.
    • Werner, S., & Thies, B. (2000). Is" change blindness" attenuated by domain-specific expertise? An expertnovices comparison of change detection in football images. Visual Cognition, 7, 163-173.
    • Wolfe, J. M., Võ, M. L.-H., Evans, K. K., & Greene, M. R. (2011). Visual search in scenes involves selective and non-selective pathways. Trends in Cognitive Sciences, 15, 77-84.
    • Yarbus, A. (1967). Eye movements and vision. New York: Plenum Press.
    • Zelinsky, G. J., & Schmidt, J. (2009). An effect of referential scene constraint on search implies scene segmentation. Visual Cognition, 17, 1004-1028.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    65
    65%
  • No similar publications.

Share - Bookmark

Cite this article