Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Isahak, Naatasha; Gody, Guillaume; Malins, Lara R.; Mitchell, Nicholas J.; Payne, Richard J.; Perrier, Sébastien (2016)
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
Subjects: QD, TP
Controlled radical polymerization methods and click chemistry form a versatile toolbox for creating complex polymer architectures. However, the incompatibility between the functional groups required for click reactions and the reaction conditions of radical polymerization techniques often limits application. Here, we demonstrate how combining two complementary click reactions in a sequence circumvents compatibility issues. We employ isocyanate-amine addition on a polymer obtained by RAFT without purification, thus allowing us to work at exact equimolarity. The addition of commercially available amine-functional azido or strained alkyne compounds, yields orthogonally modified polymers, which can be coupled together in a subsequent strain promoted cycloaddition (SPAAC). The efficiency of this reaction sequence is demonstrated with different acrylate, methacrylate, and acrylamide polymers giving block copolymers in high yield. The resulting diblock copolymers remain active towards RAFT polymerization, thus allowing access to multiblock structures by simple chain extension. The orthogonality of the isocyanate-amine reaction, SPAAC and RAFT polymerization (both in terms of monomer and chain end groups) is a key advantage and offers access to functional and challenging polymer architectures without the need for stringent reaction conditions or laborious intermediate purifications.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. M. A. Gauthier and H.-A. Klok, Chem. Commun., 2008, 2591- 2611.
    • 2. J. M. Harris and R. B. Chess, Nat. Rev. Drug Discov., 2003, 2, 214-221.
    • 3. M. Sarikaya, C. Tamerler, D. T. Schwartz and F. Baneyx, Ann. Rev. Mater. Res., 2004, 34, 373-408.
    • 4. W. A. Petka, J. L. Harden, K. P. McGrath, D. Wirtz and D. A. Tirrell, Science, 1998, 281, 389-392.
    • 5. C. Wang, R. J. Stewart and J. KopeCek, Nature, 1999, 397, 417-420.
    • 6. J. D. Hartgerink, E. Beniash and S. I. Stupp, Science, 2001, 294, 1684-1688.
    • 7. R. Duncan, Nat. Rev. Drug Discov., 2003, 2, 347-360.
    • 8. G. Moad, E. Rizzardo and S. H. Thang, Aust. J. Chem., 2012, 65, 985-1076.
    • 9. S. Dehn, R. Chapman, K. A. Jolliffe and S. Perrier, Polym. Rev., 2011, 51, 214-234.
    • 10. B. Le Droumaguet and J. Nicolas, Polym. Chem., 2010, 1, 563- 598.
    • 11. I. Cobo, M. Li, B. S. Sumerlin and S. Perrier, Nat. Mater., 2015, 14, 143-159.
    • 12. G. Moad, E. Rizzardo and S. H. Thang, Polym. Int., 2011, 60, 9-25.
    • 13. J. Nicolas, G. Mantovani and D. M. Haddleton, Macromol. Rapid Commun., 2007, 28, 1083-1111.
    • 14. S. Perrier and P. Takolpuckdee, J. Polym. Sci. Part A: Polym. Chem., 2005, 43, 5347-5393.
    • 15. P. J. Roth, C. Boyer, A. B. Lowe and T. P. Davis, Macromol. Rapid Commun., 2011, 32, 1123-1143.
    • 16. P. E. Dawson, T. W. Muir, I. Clark-Lewis and S. Kent, Science, 1994, 266, 776-779.
    • 17. L. R. Malins and R. J. Payne, Curr. Opin. Chem. Biol., 2014, 22, 70-78.
    • 18. L. R. Malins and R. J. Payne, Aust. J. Chem., 2015, 68, 521- 537.
    • 19. C. P. R. Hackenberger and D. Schwarzer, Angew. Chem. Int. Ed., 2008, 47, 10030-10074.
    • 20. S. B. Kent, Chem. Soc. Rev., 2009, 38, 338-351.
    • 21. L. Malins and R. Payne, in Protein Ligation and Total Synthesis I, ed. L. Liu, Springer International Publishing, 2015, vol. 362, ch. 584, pp. 27-87.
    • 22. D. P. Gamblin, E. M. Scanlan and B. G. Davis, Chem. Rev., 2008, 109, 131-163.
    • 23. R. J. Payne and C.-H. Wong, Chem. Commun., 2010, 46, 21- 43.
    • 24. L. Raibaut, N. Ollivier and O. Melnyk, Chem. Soc. Rev., 2012, 41, 7001-7015.
    • 25. M. Schmitz, M. Kuhlmann, O. Reimann, C. P. R. Hackenberger and J. Groll, Biomacromolecules, 2015, 16, 1088-1094.
    • 26. M. Kuhlmann, O. Reimann, C. P. R. Hackenberger and J. Groll, Macromol. Rapid Commun.,, 2015, 36, 472-476.
    • 27. G. Gody, T. Maschmeyer, P. B. Zetterlund and S. Perrier, Macromolecules, 2014, 47, 3451-3460.
    • 28. E. M. Fettes, J. Polym. Sci., Part C: Polym. Lett., 1975, 13, 56- 57.
    • 29. R. Venkatesh, F. Vergouwen and B. Klumperman, J. Polym. Sci. Part A: Polym. Chem., 2004, 42, 3271-3284.
    • 30. R. E. Thompson, X. Liu, N. Alonso-García, P. J. B. Pereira, K. A. Jolliffe and R. J. Payne, J. Am. Chem. Soc., 2014, 136, 8161-8164.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

Cite this article