LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Taylor, Frank E. (2014)
Publisher: Springer-Verlag
Languages: English
Types: Article
top neutralino, validity test [standard model], stop --> bottom chargino, QC, 530, Physical Sciences, mass: lower limit [chargino], High Energy Physics - Experiment, CERN LHC Coll, missing-energy [transverse momentum], mass: lower limit [neutralino], p p --> 2stop anything, 8000 GeV-cms, experimental results, branching ratio [stop], Top squark, Physik, Hadron-Hadron Scattering, QC0793, Hadron-Hadron Scattering; Supersymmetry; Top squark; Proton-proton scattering; ATLAS detector, Science & Technology, Fysik, background, decay modes [stop], mass [stop], pair production [stop], Proton-proton scattering, multiplicity [jet]--> Subjects: scattering [p p], Supersymmetry, ATLAS, Particle Physics - Experiment, stop --> top neutralino, validity test [standard model], stop --> bottom chargino, QC, 530, Physical Sciences, mass: lower limit [chargino], High Energy Physics - Experiment, CERN LHC Coll, missing-energy [transverse momentum], mass: lower limit [neutralino], p p --> 2stop anything, 8000 GeV-cms, experimental results, branching ratio [stop], Top squark, Physik, Hadron-Hadron Scattering, QC0793, Hadron-Hadron Scattering; Supersymmetry; Top squark; Proton-proton scattering; ATLAS detector, Science & Technology, Fysik, background, decay modes [stop], mass [stop], pair production [stop], Proton-proton scattering, multiplicity [jet]
ddc: ddc:500.2, ddc:530

Classified by OpenAIRE into

arxiv: High Energy Physics::Phenomenology, High Energy Physics::Experiment, Computer Science::Data Structures and Algorithms
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of $20.1 \rm{fb}^{-1}$ of proton--proton collision data at $\sqrt{s}=8$~TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$ or $\tilde{t}\rightarrow b\tilde{\chi}_{1}^{\pm} \rightarrow b W^{\left(\ast\right)} \tilde{\chi}_{1}^{0}$, where $\tilde{\chi}_{1}^{0}$ ($\tilde{\chi}_{1}^{\pm}$) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$. For a branching fraction of $100\%$, top squark masses in the range $270$--$645 GeV$ are excluded for $\tilde{\chi}_{1}^{0}$ masses below $30 GeV$. For a branching fraction of $50\%$ to either $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$ or $\tilde{t}\rightarrow b\tilde{\chi}_{1}^{\pm}$, and assuming the $\tilde{\chi}_{1}^{\pm}$ mass to be twice the $\tilde{\chi}_{1}^{0}$ mass, top squark masses in the range $250$--$550 GeV$ are excluded for $\tilde{\chi}_{1}^{0}$ masses below $60 GeV$. The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of $20.1 \rm{fb}^{-1}$ of proton-proton collision data at $\sqrt{s}=8$ TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$ or $\tilde{t}\rightarrow b\tilde{\chi}_{1}^{\pm} \rightarrow b W^{\left(\ast\right)} \tilde{\chi}_{1}^{0}$, where $\tilde{\chi}_{1}^{0}$ ($\tilde{\chi}_{1}^{\pm}$) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$. For a branching fraction of 100%, top squark masses in the range 270-645 GeV are excluded for $\tilde{\chi}_{1}^{0}$ masses below 30 GeV. For a branching fraction of 50% to either $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$ or $\tilde{t}\rightarrow b\tilde{\chi}_{1}^{\pm}$, and assuming the $\tilde{\chi}_{1}^{\pm}$ mass to be twice the $\tilde{\chi}_{1}^{0}$ mass, top squark masses in the range 250-550 GeV are excluded for $\tilde{\chi}_{1}^{0}$ masses below 60 GeV.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [8] P. Ramond, Dual theory for free fermions, Phys. Rev. D 3 (1971) 2415 [INSPIRE].
    • [9] Y. Golfand and E.P. Likhtman, Extension of the algebra of Poincar´e group generators and violation of p invariance, JETP Lett. 13 (1971) 323 [INSPIRE].
    • [10] A. Neveu and J.H. Schwarz, Factorizable dual model of pions, Nucl. Phys. B 31 (1971) 86 [INSPIRE].
    • [11] A. Neveu and J.H. Schwarz, Quark model of dual pions, Phys. Rev. D 4 (1971) 1109 [INSPIRE].
    • [12] J.-L. Gervais and B. Sakita, Field theory interpretation of supergauges in dual models, Nucl. Phys. B 34 (1971) 632 [INSPIRE].
    • [13] D.V. Volkov and V.P. Akulov, Is the neutrino a Goldstone particle?, Phys. Lett. B 46 (1973) 109 [INSPIRE].
    • [14] J. Wess and B. Zumino, A Lagrangian model invariant under supergauge transformations, Phys. Lett. B 49 (1974) 52 [INSPIRE].
    • [15] J. Wess and B. Zumino, Supergauge transformations in four-dimensions, Nucl. Phys. B 70 (1974) 39 [INSPIRE].
    • [16] S. Dimopoulos and H. Georgi, Softly broken supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [INSPIRE].
    • [17] E. Witten, Dynamical breaking of supersymmetry, Nucl. Phys. B 188 (1981) 513 [INSPIRE].
    • [18] M. Dine, W. Fischler and M. Srednicki, Supersymmetric technicolor, Nucl. Phys. B 189 (1981) 575 [INSPIRE].
    • [19] S. Dimopoulos and S. Raby, Supercolor, Nucl. Phys. B 192 (1981) 353 [INSPIRE].
    • [20] N. Sakai, Naturalness in supersymmetric GUTS, Z. Phys. C 11 (1981) 153 [INSPIRE].
    • [21] R.K. Kaul and P. Majumdar, Cancellation of quadratically divergent mass corrections in globally supersymmetric spontaneously broken gauge theories, Nucl. Phys. B 199 (1982) 36 [INSPIRE].
    • [22] R. Barbieri and G.F. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].
    • [23] B. de Carlos and J.A. Casas, One loop analysis of the electroweak breaking in supersymmetric models and the fine tuning problem, Phys. Lett. B 309 (1993) 320 [hep-ph/9303291] [INSPIRE].
    • [24] P. Fayet, Supersymmetry and weak, electromagnetic and strong interactions, Phys. Lett. B 64 (1976) 159 [INSPIRE].
    • [25] P. Fayet, Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions, Phys. Lett. B 69 (1977) 489 [INSPIRE].
    • [26] G.R. Farrar and P. Fayet, Phenomenology of the production, decay and detection of new hadronic states associated with supersymmetry, Phys. Lett. B 76 (1978) 575 [INSPIRE].
    • [27] P. Fayet, Relations between the masses of the superpartners of leptons and quarks, the goldstino couplings and the neutral currents, Phys. Lett. B 84 (1979) 416 [INSPIRE].
    • [28] W. Beenakker, M. Kr¨amer, T. Plehn, M. Spira and P.M. Zerwas, Stop production at hadron colliders, Nucl. Phys. B 515 (1998) 3 [hep-ph/9710451] [INSPIRE].
    • [29] W. Beenakker et al., Supersymmetric top and bottom squark production at hadron colliders, JHEP 08 (2010) 098 [arXiv:1006.4771] [INSPIRE].
    • [50] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].
    • [52] T. Sj¨ostrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
    • [53] P.Z. Skands, Tuning Monte Carlo generators: the Perugia tunes, Phys. Rev. D 82 (2010) 074018 [arXiv:1005.3457] [INSPIRE].
    • [54] H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].
    • [55] J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].
    • [56] S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009) 082001 [arXiv:0903.2120] [INSPIRE].
    • [57] A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].
    • [58] M. Cacciari, M. Czakon, M. Mangano, A. Mitov and P. Nason, Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation, Phys. Lett. B 710 (2012) 612 [arXiv:1111.5869] [INSPIRE].
    • [59] M. Czakon and A. Mitov, Top++: a program for the calculation of the top-pair cross-section at hadron colliders, arXiv:1112.5675 [INSPIRE].
    • [60] J.M. Campbell and R.K. Ellis, tt¯W +− production and decay at NLO, JHEP 07 (2012) 052 [arXiv:1204.5678] [INSPIRE].
    • [61] M.V. Garzelli, A. Kardos, C.G. Papadopoulos and Z. Tr´ocs´anyi, Z0-boson production in association with a top anti-top pair at NLO accuracy with parton shower effects, Phys. Rev. D 85 (2012) 074022 [arXiv:1111.1444] [INSPIRE].
    • [62] N. Kidonakis, NNLL resummation for s-channel single top quark production, Phys. Rev. D 81 (2010) 054028 [arXiv:1001.5034] [INSPIRE].
    • [63] N. Kidonakis, Two-loop soft anomalous dimensions for single top quark associated production with a W − or H−, Phys. Rev. D 82 (2010) 054018 [arXiv:1005.4451] [INSPIRE].
    • [64] N. Kidonakis, Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production, Phys. Rev. D 83 (2011) 091503 [arXiv:1103.2792] [INSPIRE].
    • [65] J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE].
    • [67] M. B¨ahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].
    • [69] ATLAS collaboration, The ATLAS simulation infrastructure, Eur. Phys. J. C 70 (2010) 823 [arXiv:1005.4568] [INSPIRE].
    • [70] GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].
    • [71] ATLAS collaboration, The simulation principle and performance of the ATLAS fast calorimeter simulation FastCaloSim, ATL-PHYS-PUB-2010-013 (2010).
    • [72] ATLAS collaboration, Performance of primary vertex reconstruction in proton-proton collisions at √s = 7 TeV in the ATLAS experiment, ATLAS-CONF-2010-069 (2010).
    • [73] W. Lampl et al., Calorimeter clustering algorithms: description and performance, ATL-LARG-PUB-2008-002 (2008).
    • [74] M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
    • [75] M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the kt jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].
    • [76] M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
    • [77] C. Issever, K. Borras and D. Wegener, An Improved weighting algorithm to achieve software compensation in a fine grained LAr calorimeter, Nucl. Instrum. Meth. A 545 (2005) 803 [physics/0408129] [INSPIRE].
    • [78] M. Cacciari and G.P. Salam, Pileup subtraction using jet areas, Phys. Lett. B 659 (2008) 119 [arXiv:0707.1378] [INSPIRE].
    • [79] ATLAS collaboration, Jet energy measurement with the ATLAS detector in proton-proton collisions at √s = 7 TeV, Eur. Phys. J. C 73 (2013) 2304 [arXiv:1112.6426] [INSPIRE].
    • [80] ATLAS collaboration, Measurement of the b-tag efficiency in a sample of jets containing muons with 5 fb−1 of data from the ATLAS detector, ATLAS-CONF-2012-043 (2012).
    • [81] ATLAS collaboration, Calibrating the b-tag efficiency and mistag rate in 35 pb−1 of data with the ATLAS detector, ATLAS-CONF-2011-089 (2011).
    • [82] ATLAS collaboration, Commissioning of the ATLAS high-performance b-tagging algorithms in the 7 TeV collision data, ATLAS-CONF-2011-102 (2011).
    • [83] ATLAS collaboration, Electron performance measurements with the ATLAS detector using the 2010 LHC proton-proton collision data, Eur. Phys. J. C 72 (2012) 1909 [arXiv:1110.3174] [INSPIRE].
    • [84] ATLAS collaboration, A measurement of the ATLAS muon reconstruction and trigger efficiency using J/ψ decays, ATLAS-CONF-2011-021 (2011).
    • [85] ATLAS collaboration, Muon reconstruction efficiency in reprocessed 2010 LHC proton-proton collision data recorded with the ATLAS detector, ATLAS-CONF-2011-063 (2011).
    • [87] T. Sj¨ostrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
    • [89] G. Corcella et al., HERWIG 6.5 release note, hep-ph/0210213 [INSPIRE].
    • [90] J.M. Butterworth, J.R. Forshaw and M.H. Seymour, Multiparton interactions in photoproduction at HERA, Z. Phys. C 72 (1996) 637 [hep-ph/9601371] [INSPIRE].
    • [91] ATLAS collaboration, Measurement of tt¯ production with a veto on additional central jet activity in pp collisions at √s = 7 TeV using the ATLAS detector, Eur. Phys. J. C 72 (2012) 2043 [arXiv:1203.5015] [INSPIRE].
    • [92] H1 and ZEUS collaborations, F.D. Aaron et al., Combined measurement and QCD analysis of the inclusive e±p scattering cross sections at HERA, JHEP 01 (2010) 109 [arXiv:0911.0884] [INSPIRE].
    • [93] M.V. Garzelli, A. Kardos, C.G. Papadopoulos and Z. Tr´ocs´anyi, tt¯ W ± and t t¯Z hadroproduction at NLO accuracy in QCD with parton shower and hadronization effects, JHEP 11 (2012) 056 [arXiv:1208.2665] [INSPIRE].
    • [94] ATLAS collaboration, Measurement of the cross-section for W boson production in association with b-jets in pp collisions at √s = 7 TeV with the ATLAS detector, JHEP 06 (2013) 084 [arXiv:1302.2929] [INSPIRE].
    • [95] G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [arXiv:1007.1727] [INSPIRE].
    • [96] A.L. Read, Presentation of search results: the CL(s) technique, J. Phys. G 28 (2002) 2693 [INSPIRE].
    • 14 Department for Physics and Technology, University of Bergen, Bergen, Norway
    • 15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
    • 16 Department of Physics, Humboldt University, Berlin, Germany
    • 17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
    • 18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
    • 19 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics, Dogus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
    • 20 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Universit`a di Bologna, Bologna, Italy
    • 21 Physikalisches Institut, University of Bonn, Bonn, Germany
    • 22 Department of Physics, Boston University, Boston MA, United States of America
    • 23 Department of Physics, Brandeis University, Waltham MA, United States of America
    • 24 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
    • 25 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
    • 26 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (c) University Politehnica Bucharest, Bucharest; (d) West University in Timisoara, Timisoara, Romania
    • 27 Departamento de F´ısica, Universidad de Buenos Aires, Buenos Aires, Argentina
    • 28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
    • 29 Department of Physics, Carleton University, Ottawa ON, Canada
    • 30 CERN, Geneva, Switzerland
    • 31 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
    • 32 (a) Departamento de F´ısica, Pontificia Universidad Cato´lica de Chile, Santiago; (b) Departamento de F´ısica, Universidad T´ecnica Federico Santa Mar´ıa, Valpara´ıso, Chile
    • 33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Physics Department, Shanghai Jiao Tong University, Shanghai, China
    • 34 Laboratoire de Physique Corpusculaire, Clermont Universit´e and Universit´e Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
    • 35 Nevis Laboratory, Columbia University, Irvington NY, United States of America
    • 36 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
    • 37 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Universita` della Calabria, Rende, Italy
    • 38 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
    • 39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
    • 40 Physics Department, Southern Methodist University, Dallas TX, United States of America
    • 41 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
    • 42 DESY, Hamburg and Zeuthen, Germany
    • 43 Institut fu¨r Experimentelle Physik IV, Technische Universita¨t Dortmund, Dortmund, Germany
    • 44 Institut fu¨r Kern- und Teilchenphysik, Technische Universita¨t Dresden, Dresden, Germany
    • 45 Department of Physics, Duke University, Durham NC, United States of America
    • 46 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
    • 47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
    • 131 Physics Department, University of Regina, Regina SK, Canada
    • 132 Ritsumeikan University, Kusatsu, Shiga, Japan
    • 133 (a) INFN Sezione di Roma; (b) Dipartimento di Fisica, Sapienza Universita` di Roma, Roma, Italy
    • 134 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Universita` di Roma Tor Vergata, Roma, Italy
    • 135 (a) INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Universita` Roma Tre, Roma, Italy
    • 136 (a) Facult´e des Sciences Ain Chock, R´eseau Universitaire de Physique des Hautes Energies - Universit´e Hassan II, Casablanca; (b) Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat; (c) Facult´e des Sciences Semlalia, Universit´e Cadi Ayyad, LPHEA-Marrakech; (d) Facult´e des Sciences, Universit´e Mohamed Premier and LPTPM, Oujda; (e) Facult´e des sciences, Universit´e Mohammed V-Agdal, Rabat, Morocco
    • 137 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat `a l'Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
    • 138 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
    • 139 Department of Physics, University of Washington, Seattle WA, United States of America
    • 140 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
    • 141 Department of Physics, Shinshu University, Nagano, Japan
    • 142 Fachbereich Physik, Universita¨t Siegen, Siegen, Germany
    • 143 Department of Physics, Simon Fraser University, Burnaby BC, Canada
    • 144 SLAC National Accelerator Laboratory, Stanford CA, United States of America
    • 145 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
    • 146 (a) Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
    • 147 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
    • 148 Physics Department, Royal Institute of Technology, Stockholm, Sweden
    • 149 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America
    • 150 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
    • 151 School of Physics, University of Sydney, Sydney, Australia
    • 152 Institute of Physics, Academia Sinica, Taipei, Taiwan
    • 153 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
    • 154 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
    • 155 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
    • 156 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
    • 157 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
    • 158 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
    • 159 Department of Physics, University of Toronto, Toronto ON, Canada
    • 160 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada
    • 161 Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
    • 162 Department of Physics and Astronomy, Tufts University, Medford MA, United States of America
    • 163 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
    • 164 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
    • 165 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Universita` di Udine, Udine, Italy
  • Discovered through pilot similarity algorithms. Send us your feedback.